Lecture 5

1.9 Ideals, factors and homomorphisms

Under an ideal of C^{*}-algebra we will always mean norm-closed two-sided ideal (for maximal ideals in in the commutative case this happens automatically).

Lemma 1.44. Every ideal I in a C^{*}-algebra is self-adjoint: $I=I^{*}$.
Proof. If $I \subset A$ is an ideal, then $B:=I \cap I^{*} \subseteq A$ is a C^{*}-subalgebra. In this case, $B \supset I \cdot I^{*}$. Let $\left(u_{\lambda}\right)$ is an approximate unit in B, and $j \in I$. Then

$$
\lim _{\lambda \in \Lambda}\left\|j^{*} u_{\lambda}-j^{*}\right\|^{2}=\lim _{\lambda \in \Lambda}\left\|u_{\lambda}\left(j j^{*} u_{\lambda}-j j^{*}\right)-\left(j j^{*} u_{\lambda}-j j^{*}\right)\right\| \leqslant 2 \lim _{\lambda \in \Lambda}\left\|j j^{*} u_{\lambda}-j j^{*}\right\|=0 .
$$

Since $u_{\lambda} \in I$, then $j^{*} u_{\lambda} \in I$, so $j^{*} \in I$, since I is closed.
The following technical lemma is often used.
Lemma 1.45. If $x^{*} x \leqslant a$ is in A, then there is an element $b \in A$ such that $\|b\| \leqslant\|a\|^{1 / 4}$ and $x=b a^{1 / 4}$.

Proof. Let us put $b_{n}:=x\left(a+\frac{1}{n} 1\right)^{-1 / 2} a^{1 / 4}$ (this element lies in A, even if A does not have a unit, but in this case it is convenient for us to carry out calculations in A^{+}). Let also

$$
d_{n m}:=\left(a+\frac{1}{n} 1\right)^{-1 / 2}-\left(a+\frac{1}{m} 1\right)^{-1 / 2}, \quad f_{n}(t):=t^{3 / 4}\left(t+\frac{1}{n}\right)^{-1 / 2}
$$

Then the sequence of functions $\left\{f_{n}(t)\right\}$ converges to $f(t):=t^{1 / 4}$ uniformly on $[0,\|a\|]$, since due to $u^{2}+v^{2} \geqslant 2 u v$ we have

$$
\begin{aligned}
& \left(t^{1 / 4}\left(1-\frac{t^{1 / 2}}{(t+1 / n)^{1 / 2}}\right)\right)^{2}=t^{1 / 2} \frac{t+1 / n+t-2 t^{1 / 2}(t+1 / n)^{1 / 2}}{t+1 / n}< \\
& \quad<t^{1 / 2} \frac{t+1 / n+t-2 t}{t+1 / n}=t^{1 / 2} \frac{1 / n}{t+1 / n}=\frac{2 \sqrt{t / n}}{t+1 / n} \cdot \frac{1}{2 \sqrt{n}} \leqslant \frac{1}{2 \sqrt{n}}
\end{aligned}
$$

We have

$$
\begin{aligned}
\left\|b_{n}-b_{m}\right\|^{2} & =\left\|x d_{n m} a^{1 / 4}\right\|^{2}=\left\|a^{1 / 4} d_{n m} x^{*} x d_{n m} a^{1 / 4}\right\| \leqslant\left\|a^{1 / 4} d_{n m} a d_{n m} a^{1 / 4}\right\|= \\
& =\left\|d_{n m} a^{3 / 4}\right\|^{2}=\left\|f_{n}(a)-f_{m}(a)\right\|^{2}=\sup _{t \in[0,\|a\|]}\left|f_{n}(t)-f_{m}(t)\right| .
\end{aligned}
$$

Thus, since f_{n} is a Cauchy sequence, so is b_{n}. Let us put $b:=\lim _{n \rightarrow \infty} b_{n}$. Then $b a^{1 / 4}=$ $\lim _{n \rightarrow \infty} b_{n} a^{1 / 4}=\lim _{n \rightarrow \infty} x\left(a+\frac{1}{n} 1\right)^{-1 / 2} a^{1 / 2}=x$.

Problem 32. Verify that the last limit is indeed x. This can be done in a similar way to the calculation for f_{n} in the proof, using $x^{*} x \leqslant a$.

Definition 1.46. A subalgebra $B \subset A$ is called hereditary if for any positive $b \in B$ and $a \in A$, from the condition $0 \leqslant a \leqslant b$ it follows that $a \in B$.

Problem 33. Prove that a positive element of an arbitrary C^{*}-subalgebra is a positive element of the entire algebra.

Lemma 1.47. Let $I \subset A$ be an ideal and $j \in I$ a positive element. If $a^{*} a \leqslant j$, then $a \in I$. In particular, any ideal is a hereditary subalgebra.

Proof. Let us represent $a=b j^{1 / 4}$ in accordance with Lemma 1.45. Moreover, $j^{1 / 4} \in$ $C^{*}(j) \subset I$, and therefore $a \in I$.

If $I \subset A$ is an ideal, then we can define Banach factor algebra A / I with norm $\|a+I\|:=$ $\inf _{j \in I}\|a+j\|$. This is an involutive algebra: since I is self-adjoint, then $\left\|(a+I)^{*}\right\|=$ $\left\|a^{*}+I\right\|=\|a+I\|$. To be short we will denote $a+I$ by $\dot{a} \in A / I$.

Theorem 1.48. The involutive algebra A / I is a C^{*}-algebra.
Proof. Only the C^{*} property needs to be verified. Let $\left(u_{\lambda}\right)_{\lambda \in \Lambda}$ be an approximate unit of I (note that ideals typically do not have a unit, and in any case, a proper ideal does not contain the unit of A, even if the latter exists). Let us first show that

$$
\begin{equation*}
\|\dot{a}\|=\lim _{\lambda \in \Lambda}\left\|a-a u_{\lambda}\right\| \tag{1.8}
\end{equation*}
$$

Indeed, since $u_{\lambda} \in I$, then $\|\dot{a}\| \leq\left\|a-a u_{\lambda}\right\|$. To prove the reverse inequality, we choose arbitrarily $\varepsilon>0$. Then there is an element $j \in I$ such that $\|\dot{a}\| \geqslant\|a-j\|-\varepsilon$. We have

$$
\lim _{\lambda \in \Lambda}\left\|a-a u_{\lambda}\right\| \leqslant \lim _{\lambda \in \Lambda}\left(\left\|a-a u_{\lambda}-\left(j-j u_{\lambda}\right)\right\|+\left\|j-j u_{\lambda}\right\|\right)=\lim _{\lambda \in \Lambda}\left\|a-a u_{\lambda}-\left(j-j u_{\lambda}\right)\right\| .
$$

Writing in A^{+}, where the equality $a-a u_{\lambda}-\left(j-j u_{\lambda}\right)=(a-j)\left(1-u_{\lambda}\right)$ holds, we obtain the estimation $\left\|(a-j)\left(1-u_{\lambda}\right)\right\| \leqslant\|a-j\|<\|\dot{a}\|+\varepsilon$. Due to arbitrariness of $\varepsilon>0$ we obtain (1.8).

Now, calculating in A^{+}, we find the estimation

$$
\begin{aligned}
\left\|\dot{a}^{*} \dot{a}\right\| & =\lim _{\lambda \in \Lambda}\left\|a^{*} a\left(1-u_{\lambda}\right)\right\| \geqslant \lim _{\lambda \in \Lambda}\left\|\left(1-u_{\lambda}\right) a^{*} a\left(1-u_{\lambda}\right)\right\|= \\
& =\lim _{\lambda \in \Lambda} \|\left(a\left(1-u_{\lambda}\right)\left\|^{2}=\right\| \dot{a} \|^{2} .\right.
\end{aligned}
$$

The inverse inequality $\left\|\dot{a}^{*} \dot{a}\right\| \leqslant\|\dot{a}\|^{2}$ is true in any involutive Banach algebra.
Definition 1.49. Let A and B be C^{*}-algebras. A $*$-homomorphism from A to B is any homomorphism φ preserving the involution: $\varphi\left(a^{*}\right)=\varphi(a)^{*}$. If both algebras are unital, φ is called unital, if $\varphi\left(1_{A}\right)=1_{B}$.

Problem 34. Let $\varphi: A \rightarrow B$ be a $*$-homomorphism of non-unital algebras. Prove that there is a unique unital $*$-homomorphism $\varphi^{+}: A^{+} \rightarrow B^{+}$, extending φ. Note: The only way to determine φ^{+}is the requirement to be unital: $\varphi^{+}(1)=1$.

Problem 35. Let $\varphi: A \rightarrow B$ be a $*$-homomorphism of algebras, with A non-unital, and B unital. Prove that there is a unique unital $*$-homomorphism $\varphi^{(+)}: A^{+} \rightarrow B$, extending φ. Hint: the same as above.

Theorem 1.50. Let $\varphi: A \rightarrow B$ be a nonzero $*$-homomorphism. Then $\|\varphi\|=1$ (in particular, it is continuous) and $\varphi(A)$ is a C^{*}-subalgebra of B. If φ is injective, then it is isometric (on the image).

Proof. If the algebra A is non-unital, then we will consider φ^{+}from Problem 34 or $\varphi^{(+)}$ from problem 35. If the algebra A is unital, then we can assume that B is unital too (if not - then we attach a unity without requiring the homomorphism to be unital). Then $\varphi\left(1_{A}\right)=p$ is a self-adjoint idempotent $\left(p^{2}=p\right)$, the space $B_{p}:=p B p$ is a subalgebra of B (see problem 36) with identity $p=p \cdot 1_{B} \cdot p$, and φ, considered as a homomorphism in B_{p}, is unital.

Thus, in the proof we can restrict ourselves to the case of a unital homomorphism $\varphi: A \rightarrow B$ of unital algebras.

To distinguish the spectrum of an element in A and B, we will write Sp_{A} (resp., Sp_{B}) for the spectrum of elements in A (resp., in B).

Let $a=a^{*} \in A$. Then $\operatorname{Sp}_{B}(\varphi(a)) \subset \operatorname{Sp}_{A}(a)$, since φ is a unital $*$-homomorphism of algebras and $\|\varphi(a)\|=r(\varphi(a)) \leqslant r(a)=\|a\|$. For an element $a \in A$ of general form, we have $\|\varphi(a)\|^{2}=\left\|\varphi\left(a^{*} a\right)\right\| \leqslant\left\|a^{*} a\right\|=\|a\|^{2}$, so $\|\varphi\| \leqslant 1$, that is, φ is continuous and does not increase the norm.

Suppose now that φ is injective but not isometric. Then there is an element $a \in A$ such that $\|\varphi(a)\|<\|a\|$. This means $\|\varphi(b)\|<\|b\|$ for $b:=a^{*} a$. Let us denote $\|\varphi(b)\|=: r$ and $\|b\|=: s$. Let h be a continuous real function that satisfies the conditions $q(t)=0$ for $t \in[0, r]$ and $h(s)=1$. Then $\|\varphi(h(b))\|=\|h(\varphi(b))\|=\sup _{\lambda \in \operatorname{Sp}_{B}(\varphi(b))}|h(\lambda)|=0$, while $\|h(b)\|=\sup _{\lambda \in \operatorname{Sp}_{A}(b)}|h(\lambda)| \geqslant 1$. A contradiction with injectivity. (The commutation condition is obvious for polynomials, h_{n}, uniformly approximating h, and in the limit we obtain it for h.)

In the case of a general (not necessarily injective) *-homomorphism, note that that $I=\operatorname{Ker} \varphi$ is closed since φ is continuous, so I is an ideal in A. Therefore φ induces an injective $*$-homomorphism $\dot{\varphi}: A / I \rightarrow B$ by the rule $\dot{\varphi}(\dot{a})=\varphi(a)$. Then, by what has been proven, $\dot{\varphi}$ is isometric, and $\varphi(A)=\dot{\varphi}(A / I)$ is closed in B, so it is a C^{*}-subalgebra. Since φ is non-zero, then there is $a \in A$ with $\varphi(a) \neq 0$. Since $\dot{\varphi}$ is isometric, we have the equality $\|\dot{a}\|=\|\dot{\varphi}(\dot{a})\|=\|\varphi(a)\|$. Moreover, for any $\varepsilon>0$ there is an element $c \in A$ such that $\dot{c}=\dot{a}$ and $\|c\|<\|\dot{a}\|+\varepsilon$. Thus, $\|\varphi(c)\|>\|c\|-\varepsilon$. Since ε is arbitrary, we obtain $\|\varphi\| \geqslant 1$, so $\|\varphi\|=1$.

Problem 36. Prove that the algebra B_{p} is closed, first obtaining the equality $p B p=$ $\operatorname{Ker}\left(L_{1-p}\right) \cap \operatorname{Ker}\left(R_{1-p}\right)$, where L_{1-p} and R_{1-p} are the linear operators of left and right multiplication by $1-p$ in B, given by $L_{1-p}: b \mapsto(1-p) b$ and $R_{1-p}: b \mapsto b(1-p)$.

Problem 37. Develop the result of the previous problem by verifying the decomposition into a direct sum of closed subspaces $B=p B p \oplus p B(1-p) \oplus(1-p) B p \oplus(1-p) B(1-p)$. Moreover, if we write down the quadruple (a, b, c, d), representing an element of a given
direct sum in the form of a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then the multiplication in B passes under this isomorphism to the matrix multiplication according to the standard rule.

Problem 38. Derive from Theorem 1.50 the statement $\varphi(f(a))=f(\varphi(a))$ for any normal a and f, which is continuous on the appropriate set (not only for a polynomial).

Problem 39. Obtain a proof of Theorem 1.50 via a reduction to a map of commutative subalgebras.

Corollary 1.51. Let $I \subset A$ be an ideal, and $B \subset A$ be a C^{*}-subalgebra. Then $I+B$ coincides with the C^{*}-subalgebra $C^{*}(I, B)$ generated by I and B.

Proof. It is obvious that $I+B \subset C^{*}(I, B)$ is an involutive subalgebra. Let $q: A \rightarrow A / I$ be the $*$-homomorphism of factorization. We know from the previous theorem that $q(B)$ is closed in A / I, so $I+B=q^{-1}(q(B))$ is closed in A. This means that $I+B$ is a C^{*}-algebra, contained in $C^{*}(I, B)$.

So far we were very careful when considering spectrum of an element in a C^{*}-algebra and its C^{*}-subalgebra. The next lemma shows that this is not so important.

Lemma 1.52. Let $B \subset A$ be a unital C^{*}-subalgebra of a unital C^{*}-algebra, $1_{A}=1_{B}$, and $a \in B$. Then $\operatorname{Sp}_{B}(a)=\operatorname{Sp}_{A}(a)$.

Proof. Obviously, if an element has an inverse in B, then so does A, whence $\operatorname{Sp}_{A}(a) \subset$ $\mathrm{Sp}_{B}(a)$. The reverse inclusion follows from the statement: if a is invertible into A, then its inverse belongs to B. To prove this, consider first the case $a=a^{*}$. Then the C^{*}-algebra $C=C^{*}\left(a, a^{-1}\right)$ generated by a and a^{-1}, is a commutative unital C^{*}-subalgebra of A, and therefore it is isomorphic to some algebra of functions $C(X)$. Let \hat{a} denote the image of a under this isomorphism. Then $0 \notin \operatorname{Sp}_{C(X)}(\hat{a}) \subset \mathbb{R}$. Let us choose polynomials p_{n} such that $p_{n}(t)$ converges uniformly to t^{-1} on $\operatorname{Sp}_{C(X)}(\hat{a})$. Then $\widehat{a^{-1}}=\lim _{n \rightarrow \infty} p_{n}(\hat{a})$, so $a^{-1}=\lim _{n \rightarrow \infty} p_{n}(a) \in C^{*}(a) \subset B$.

For a general element a, if a^{-1} exists in A, then $a^{-1}\left(a^{*}\right)^{-1}=\left(a^{*} a\right)^{-1} \in B$ as proven. That is why $a^{-1}=\left(a^{*} a\right)^{-1} a^{*} \in B$.

Problem 40. Show with an example that, without the condition $1_{A}=1_{B}$, the previous proposition does not hold.

