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Lecture 5

1.9 Ideals, factors and homomorphisms

Under an ideal of C∗-algebra we will always mean norm-closed two-sided ideal (for maxi-
mal ideals in in the commutative case this happens automatically).

Lemma 1.44. Every ideal I in a C∗-algebra is self-adjoint: I = I∗.

Proof. If I ⊂ A is an ideal, then B := I ∩ I∗ ⊆ A is a C∗-subalgebra. In this case,
B ⊃ I · I∗. Let (uλ) is an approximate unit in B, and j ∈ I. Then

lim
λ∈Λ
‖j∗uλ − j∗‖2 = lim

λ∈Λ
‖uλ(jj∗uλ − jj∗)− (jj∗uλ − jj∗)‖ 6 2 lim

λ∈Λ
‖jj∗uλ − jj∗‖ = 0.

Since uλ ∈ I, then j∗uλ ∈ I, so j∗ ∈ I, since I is closed.

The following technical lemma is often used.

Lemma 1.45. If x∗x 6 a is in A, then there is an element b ∈ A such that ‖b‖ 6 ‖a‖1/4

and x = ba1/4.

Proof. Let us put bn := x(a+ 1
n
1)−1/2a1/4 (this element lies in A, even if A does not have

a unit, but in this case it is convenient for us to carry out calculations in A+). Let also

dnm :=

(
a+

1

n
1

)−1/2

−
(
a+

1

m
1

)−1/2

, fn(t) := t3/4
(
t+

1

n

)−1/2

.

Then the sequence of functions {fn(t)} converges to f(t) := t1/4 uniformly on [0, ‖a‖],
since due to u2 + v2 > 2uv we have(

t1/4
(

1− t1/2

(t+ 1/n)1/2

))2

= t1/2
t+ 1/n+ t− 2t1/2(t+ 1/n)1/2

t+ 1/n
<

< t1/2
t+ 1/n+ t− 2t

t+ 1/n
= t1/2

1/n

t+ 1/n
=

2
√
t/n

t+ 1/n
· 1

2
√
n
6

1

2
√
n
.

We have

‖bn − bm‖2 = ‖xdnma1/4‖2 = ‖a1/4dnmx
∗xdnma

1/4‖ 6 ‖a1/4dnmadnma
1/4‖ =

= ‖dnma3/4‖2 = ‖fn(a)− fm(a)‖2 = sup
t∈[0,‖a‖]

|fn(t)− fm(t)|.

Thus, since fn is a Cauchy sequence, so is bn. Let us put b := limn→∞ bn. Then ba1/4 =
limn→∞ bna

1/4 = limn→∞ x(a+ 1
n
1)−1/2a1/2 = x.

Problem 32. Verify that the last limit is indeed x. This can be done in a similar way to
the calculation for fn in the proof, using x∗x 6 a.
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Definition 1.46. A subalgebra B ⊂ A is called hereditary if for any positive b ∈ B and
a ∈ A, from the condition 0 6 a 6 b it follows that a ∈ B.

Problem 33. Prove that a positive element of an arbitrary C∗-subalgebra is a positive
element of the entire algebra.

Lemma 1.47. Let I ⊂ A be an ideal and j ∈ I a positive element. If a∗a 6 j, then
a ∈ I. In particular, any ideal is a hereditary subalgebra.

Proof. Let us represent a = bj1/4 in accordance with Lemma 1.45. Moreover, j1/4 ∈
C∗(j) ⊂ I, and therefore a ∈ I.

If I ⊂ A is an ideal, then we can define Banach factor algebra A/I with norm ‖a+I‖ :=
infj∈I ‖a + j‖. This is an involutive algebra: since I is self-adjoint, then ‖(a + I)∗‖ =
‖a∗ + I‖ = ‖a+ I‖. To be short we will denote a+ I by ȧ ∈ A/I.

Theorem 1.48. The involutive algebra A/I is a C∗-algebra.

Proof. Only the C∗ property needs to be verified. Let (uλ)λ∈Λ be an approximate unit of
I (note that ideals typically do not have a unit, and in any case, a proper ideal does not
contain the unit of A, even if the latter exists). Let us first show that

‖ȧ‖ = lim
λ∈Λ
‖a− auλ‖. (1.8)

Indeed, since uλ ∈ I, then ‖ȧ‖ ≤ ‖a − auλ‖. To prove the reverse inequality, we choose
arbitrarily ε > 0. Then there is an element j ∈ I such that ‖ȧ‖ > ‖a− j‖ − ε. We have

lim
λ∈Λ
‖a− auλ‖ 6 lim

λ∈Λ
(‖a− auλ − (j − juλ)‖+ ‖j − juλ‖) = lim

λ∈Λ
‖a− auλ − (j − juλ)‖.

Writing in A+, where the equality a− auλ− (j − juλ) = (a− j)(1− uλ) holds, we obtain
the estimation ‖(a − j)(1 − uλ)‖ 6 ‖a − j‖ < ‖ȧ‖ + ε. Due to arbitrariness of ε > 0 we
obtain (1.8).

Now, calculating in A+, we find the estimation

‖ȧ∗ȧ‖ = lim
λ∈Λ
‖a∗a(1− uλ)‖ > lim

λ∈Λ
‖(1− uλ)a∗a(1− uλ)‖ =

= lim
λ∈Λ
‖(a(1− uλ)‖2 = ‖ȧ‖2.

The inverse inequality ‖ȧ∗ȧ‖ 6 ‖ȧ‖2 is true in any involutive Banach algebra.

Definition 1.49. Let A and B be C∗-algebras. A ∗-homomorphism from A to B is any
homomorphism ϕ preserving the involution: ϕ(a∗) = ϕ(a)∗. If both algebras are unital,
ϕ is called unital, if ϕ(1A) = 1B.

Problem 34. Let ϕ : A → B be a ∗-homomorphism of non-unital algebras. Prove that
there is a unique unital ∗-homomorphism ϕ+ : A+ → B+, extending ϕ. Note: The only
way to determine ϕ+ is the requirement to be unital: ϕ+(1) = 1.
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Problem 35. Let ϕ : A→ B be a ∗-homomorphism of algebras, with A non-unital, and
B unital. Prove that there is a unique unital ∗-homomorphism ϕ(+) : A+ → B, extending
ϕ. Hint: the same as above.

Theorem 1.50. Let ϕ : A → B be a nonzero ∗-homomorphism. Then ‖ϕ‖ = 1 (in
particular, it is continuous) and ϕ(A) is a C∗-subalgebra of B. If ϕ is injective, then it
is isometric (on the image).

Proof. If the algebra A is non-unital, then we will consider ϕ+ from Problem 34 or ϕ(+)

from problem 35. If the algebra A is unital, then we can assume that B is unital too (if
not — then we attach a unity without requiring the homomorphism to be unital). Then
ϕ(1A) = p is a self-adjoint idempotent (p2 = p), the space Bp := pBp is a subalgebra of
B (see problem 36) with identity p = p · 1B · p, and ϕ, considered as a homomorphism in
Bp, is unital.

Thus, in the proof we can restrict ourselves to the case of a unital homomorphism
ϕ : A→ B of unital algebras.

To distinguish the spectrum of an element in A and B, we will write SpA (resp., SpB)
for the spectrum of elements in A (resp., in B).

Let a = a∗ ∈ A. Then SpB(ϕ(a)) ⊂ SpA(a), since ϕ is a unital ∗-homomorphism of
algebras and ‖ϕ(a)‖ = r(ϕ(a)) 6 r(a) = ‖a‖. For an element a ∈ A of general form, we
have ‖ϕ(a)‖2 = ‖ϕ(a∗a)‖ 6 ‖a∗a‖ = ‖a‖2, so ‖ϕ‖ 6 1, that is, ϕ is continuous and does
not increase the norm.

Suppose now that ϕ is injective but not isometric. Then there is an element a ∈ A
such that ‖ϕ(a)‖ < ‖a‖. This means ‖ϕ(b)‖ < ‖b‖ for b := a∗a. Let us denote ‖ϕ(b)‖ =: r
and ‖b‖ =: s. Let h be a continuous real function that satisfies the conditions q(t) = 0
for t ∈ [0, r] and h(s) = 1. Then ‖ϕ(h(b))‖ = ‖h(ϕ(b))‖ = supλ∈SpB(ϕ(b)) |h(λ)| = 0, while
‖h(b)‖ = supλ∈SpA(b) |h(λ)| > 1. A contradiction with injectivity. (The commutation
condition is obvious for polynomials, hn, uniformly approximating h, and in the limit we
obtain it for h.)

In the case of a general (not necessarily injective) ∗-homomorphism, note that that
I = Kerϕ is closed since ϕ is continuous, so I is an ideal in A. Therefore ϕ induces an
injective ∗-homomorphism ϕ̇ : A/I → B by the rule ϕ̇(ȧ) = ϕ(a). Then, by what has
been proven, ϕ̇ is isometric, and ϕ(A) = ϕ̇(A/I) is closed in B, so it is a C∗-subalgebra.
Since ϕ is non-zero, then there is a ∈ A with ϕ(a) 6= 0. Since ϕ̇ is isometric, we have the
equality ‖ȧ‖ = ‖ϕ̇(ȧ)‖ = ‖ϕ(a)‖ . Moreover, for any ε > 0 there is an element c ∈ A such
that ċ = ȧ and ‖c‖ < ‖ȧ‖ + ε. Thus, ‖ϕ(c)‖ > ‖c‖ − ε. Since ε is arbitrary, we obtain
‖ϕ‖ > 1, so ‖ϕ‖ = 1.

Problem 36. Prove that the algebra Bp is closed, first obtaining the equality pBp =
Ker(L1−p) ∩ Ker(R1−p), where L1−p and R1−p are the linear operators of left and right
multiplication by 1− p in B, given by L1−p : b 7→ (1− p)b and R1−p : b 7→ b(1− p).

Problem 37. Develop the result of the previous problem by verifying the decomposition
into a direct sum of closed subspaces B = pBp⊕ pB(1− p)⊕ (1− p)Bp⊕ (1− p)B(1− p).
Moreover, if we write down the quadruple (a, b, c, d), representing an element of a given
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direct sum in the form of a matrix

(
a b
c d

)
, then the multiplication in B passes under

this isomorphism to the matrix multiplication according to the standard rule.

Problem 38. Derive from Theorem 1.50 the statement ϕ(f(a)) = f(ϕ(a)) for any normal
a and f , which is continuous on the appropriate set (not only for a polynomial).

Problem 39. Obtain a proof of Theorem 1.50 via a reduction to a map of commutative
subalgebras.

Corollary 1.51. Let I ⊂ A be an ideal, and B ⊂ A be a C∗-subalgebra. Then I + B
coincides with the C∗-subalgebra C∗(I, B) generated by I and B.

Proof. It is obvious that I + B ⊂ C∗(I, B) is an involutive subalgebra. Let q : A→ A/I
be the ∗-homomorphism of factorization. We know from the previous theorem that q(B)
is closed in A/I, so I + B = q−1(q(B)) is closed in A. This means that I + B is a
C∗-algebra, contained in C∗(I, B).

So far we were very careful when considering spectrum of an element in a C∗-algebra
and its C∗-subalgebra. The next lemma shows that this is not so important.

Lemma 1.52. Let B ⊂ A be a unital C∗-subalgebra of a unital C∗-algebra, 1A = 1B, and
a ∈ B. Then SpB(a) = SpA(a).

Proof. Obviously, if an element has an inverse in B, then so does A, whence SpA(a) ⊂
SpB(a). The reverse inclusion follows from the statement: if a is invertible into A, then its
inverse belongs to B. To prove this, consider first the case a = a∗. Then the C∗-algebra
C = C∗(a, a−1) generated by a and a−1, is a commutative unital C∗-subalgebra of A, and
therefore it is isomorphic to some algebra of functions C(X). Let â denote the image
of a under this isomorphism. Then 0 /∈ SpC(X)(â) ⊂ R. Let us choose polynomials pn

such that pn(t) converges uniformly to t−1 on SpC(X)(â). Then â−1 = limn→∞ pn(â), so
a−1 = limn→∞ pn(a) ∈ C∗(a) ⊂ B.

For a general element a, if a−1 exists in A, then a−1(a∗)−1 = (a∗a)−1 ∈ B as proven.
That is why a−1 = (a∗a)−1a∗ ∈ B.

Problem 40. Show with an example that, without the condition 1A = 1B, the previous
proposition does not hold.


