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Lecture 6

1.10 Topologies on B(H) and von Neumann algebras

Besides the norm topology, there are other useful topologies on the C∗-algebra B(H).

Definition 1.53. Strong topology is defined by a system of seminorms a→ ‖aξ‖, ξ ∈ H.
Weak topology is defined by a seminorm system a→ (aξ, η), ξ, η ∈ H.

Theorem 1.54. For a linear functional ϕ : B(H) → C the following conditions are
equivalent:

(i) There exist ξk, ηk ∈ H, k = 1, . . . , n, such that ϕ(a) =
∑n

k=1(aξk, ηk) for any
a ∈ B(H);

(ii) ϕ is weakly continuous;

(iii) ϕ is strongly continuous.

Proof. It is obvious that (i)=⇒(ii) =⇒(iii). Let us show that (iii) implies (i).
The strong continuity of ϕ means that the preimage {a : |ϕ(a)| < 1} of the open unit

disk is an open set in the strong topology, that is, there are positive constants ε1, . . . , εn
and vectors ξ1, . . . , ξn, such that for any a ∈ B(H) the condition ‖aξk‖ < εk (for all
k = 1, . . . , n) implies |ϕ(a)| < 1. Changing the length of these vectors if necessary, we
see that in an equivalent way we can say, that there exist vectors ξ1, . . . , ξn such that, for
any a ∈ B(H), from maxk ‖aξk‖ 6 1 it follows that |ϕ(a)| 6 1. Then

|ϕ(a)| 6

(
n∑
k=1

‖aξk‖2

)1/2

. (1.9)

Indeed, if |ϕ(a)|2 >
∑n

k=1 ‖aξk‖2 for some a, then |ϕ(a)| > ‖aξk‖ for all k, so since the
number of them is finite, one can find α ∈ R such that |ϕ(αa)| > 1, and maxk ‖αaξk‖ < 1
(for example, α−1 := (|ϕ(a)|+ max ‖aξk‖)/2 ). A contradiction.

Let K := ⊕nk=1H. The algebra B(K) can be identified with the algebra of n × n-
matrices with elements from B(H). Let ρ : B(H) → B(K) map a ∈ B(H) to a diagonal
matrix with all diagonal elements equal to a.

Let us denote ξ := ξ1 ⊕ . . . ⊕ ξn ∈ K and note that, putting ψ(ρ(a)ξ) = ϕ(a), we
obtain a linear functional on the closed subspace L ⊂ K, where L is the closure of the
space L0 := {ρ(a)ξ | a ∈ B(H)}. Indeed, first we need to verify that ψ is well defined on
L0: if ρ(a)(ξ) = ρ(b)(ξ), then (a− b)ξk = 0 for k = 1, . . . , n. In particular for arbitrarily
large R > 0 we have ‖R(a − b)ξk‖ 6 1, and therefore |ϕ(R(a − b))| 6 1. Therefore
|ϕ(a − b)| 6 1/R. Due to the arbitrariness of R, we obtain that ϕ(a − b) = 0 and thus
ψ is well defined on L0. From (1.9) we see that |ψ(ρ(a))| 6 ‖ρ(a)ξ‖, so |ψ(ζ)| ≤ ‖ζ‖ for
any ζ ∈ L0, and hence L. So, ψ is a bounded functional on L. By the Riesz theorem
on representation of functionals, there is a vector η ∈ L ⊂ K such that ψ(ζ) = (ζ, η)
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for all ζ ∈ L (we assume the Hermitian product to be linear in the first argument),
so ϕ(a) = (ρ(a)ξ, η). Decomposing it into components η = η1 ⊕ . . . ⊕ ηn, we obtain
(ρ(a)ξ, η) =

∑n
k=1(aξk, ηk).

Corollary 1.55. In B(H) a convex set is closed for the weak topology if and only if it is
closed for the strong one.

Proof. This immediately follows from the previous theorem, since, according to the Hahn-
Banach theorem, closed convex sets are obtained as the intersection of closed half-spaces,
corresponding to linear functionals.

Definition 1.56. A von Neumann algebra is a C∗-subalgebra B(H) containing unity
(identity operator) and closed in the weak topology.

The simplest examples are C and B(H) (in fact, the first algebra is a special case of
the second).

Definition 1.57. For the set S ⊆ B(H) we denote by S ′ its commutant, that is, the set
of all operators a ∈ B(H) such that as = sa for every s ∈ S.

Problem 41. Verify that

� If S is self-adjoint, then so is S ′.

� The commutant of any set is a unital algebra.

� The commutant of any set is weakly closed.

� Thus, S ′ is the von Neumann algebra for any self-adjoint set S.

� If S1 ⊂ S2, then S ′1 ⊃ S ′2.

� Always S ⊂ S ′′.

� Therefore S ′ = S ′′′, S ′′ = S ′′′′, etc.

Theorem 1.58 (von Neumann bicommutant theorem). Let A be a C∗-subalgebra of B(H)
containing the identity operator. Then the following conditions are equivalent.

(i) A = A′′;

(ii) A is weakly closed;

(iii) A is strongly closed.

Proof. Since A is a convex subset, then (ii) and (iii) are equivalent as a consequence 1.55.
Since A′′ is weakly closed, then (ii) follows from (i). It remains to show that (iii) implies
(i).

For a vector ξ ∈ H we denote by p the projection onto the closure V of the linear
subspace formed by vectors aξ, a ∈ A.
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Thus, pη = η for η ∈ V . Since 1 ∈ A, then ξ ∈ V , so pξ = ξ. Therefore papζ = paη =
aη = apζ for any ζ ∈ H, where we denote η = pζ ∈ V . So pap = ap for any a ∈ A. From
here pa = (a∗p)∗ = (pa∗p)∗ = pap and we get ap = pa, that is p ∈ A′. Let b ∈ A′′. Then
pb = bp, so pbξ = bpξ = bξ and bξ ∈ V . Thus, for every ε > 0 there is an element a ∈ A,
for which ‖(b− a)ξ‖ < ε.

Now consider some ξ1, . . . , ξn ∈ H and define ξ := ξ1 ⊕ . . .⊕ ξn ∈ K := H ⊕ . . .⊕H.
Let ρ : B(H)→ B(K) be the diagonal embedding. It is easy to see that ρ(A)′ consists of
all n×n-matrices with elements from A′, and ρ(A′′) = ρ(A)′′ (Problem 42). Applying the
first part of the proof to this situation, we obtain that for any b ∈ A′′ and every ε > 0
there is an element a ∈ A such that ‖(ρ(b) − ρ(a))ξ‖ < ε. Then

∑n
k=1 ‖(b − a)ξk‖2 =

‖(ρ(b)− ρ(a))ξ‖2 < ε2, so we can strongly approximate b ∈ A′′ by some a ∈ A.

Problem 42. Check that ρ(A)′ consists of all n×n-matrices with elements from A′, and
ρ(A′′) = ρ(A)′′.

Corollary 1.59. If A is a von Neumann algebra, then A′ is a von Neumann algebra.

Definition 1.60. The center of an algebra is the set of its elements that commute with
all its elements.

Corollary 1.61. If A is a von Neumann algebra, then its center Z is also a von Neumann
algebra.

Proof. For a subalgebra A ⊆ B(H) we have Z = A ∩ A′.

Let A ⊂ B(H) be a C∗-algebra containing the identity operator. Then the bicom-
mutant theorem states that A is weakly (strongly) dense in A′′. This result has the
disadvantage that the approximation is done by elements with, generally speaking, an
uncontrollable norm. This is overcome by the following theorem, which we present with-
out the proof, which can be found in [10, § 4.3].

Theorem 1.62 (Kaplansky density theorem). The unit ball A is weakly (strongly) dense
in the unit ball A′′. The same is true for the sets of positive elements in these unit balls
and for sets of unitary elements.

Definition 1.63. If the center Z of the von Neumann algebra A consists only of scalar
operators (that is, Z = C1), then A is called a factor.

Remark 1.64. It should be noted that besides the continuous functional calculus for self-
adjoint operators, there is a Borel functional calculus: instead of norm approximation of
continuous functions by polynomials here Borel functions are approximated by polynomi-
als, and the corresponding operators will converge in the weak topology. More precisely,
let the polynomials pi converge monotonically and pointwise to a Borel function f on
the spectrum of a self-adjoint operator a ∈ B(H). Then {pi(a)} is a strongly convergent
sequence of operators (this is a statement from the standard course, see for example [15,
§§ 7 and 11]). Since all polynomials commute with the commutator of the self-adjoint
operator, then for any Borel function f on the spectrum of a self-adjoint operator a, the
operator f(a) lies in {a}′′.



Chapter 2

Representations of C∗-algebras

2.1 Definition and basic properties

Definition 2.1. A representation of a C∗-algebraA on a Hilbert spaceH is a ∗-homomorphism
from A to B(H).

Definition 2.2. A representation of a C∗-algebra A is called algebraically irreducible, if
there is no proper invariant linear subspace in H (when operated by operators from the
image of the representation). A representation is topologically irreducible, if there is no
proper closed invariant subspaces.

We will see soon that for C∗-algebras these two concepts coincide.

Lemma 2.3. A representation π is topologically irreducible if and only if π(A)′ = C1.

Proof. If π(A)′ contains something other than scalars, then it also contains a self-adjoint
non-scalar operator (this immediately follows from the expansion of a non-scalar operator
into a linear combination of two self-adjoint ones a = a+a∗

2
+ i · a−a∗

2i
). Using Borel

functional calculus (see note 1.64) for this self-adjoint operator b, we can obtain a proper
projection p in π(A)′. Namely, if an operator is nonscalar, then it has at least two distinct
points in the spectrum, say, t0 and t1, and we need to consider a Borel function f , taking
values 0 and 1, and f(t0) = 0, f(t1) = 1 ( task 43). (You can also not use calculus,
but simply take suitable spectral projections from the standard spectral theorem, that by
construction have the necessary commutation properties). Then pH is a closed invariant
subspace, since p ∈ π(A)′.

Conversely, let L ⊂ H be a closed π(A)-invariant subspace, and p ∈ B(H) is a pro-
jection onto this subspace. Then π(a)p = pπ(a)p for any a ∈ A. Therefore pπ(a) =
(π(a∗)p)∗ = (pπ(a∗)p)∗ = pπ(a)p = π(a)p and p ∈ π(A)′. Moreover, p is not a scalar.

Problem 43. Verify in the proof above that f(b) is a proper projection, since f 2 = f
and Sp(f(b)) = {0, 1}.

Problem 44. Prove a more general fact: if a self-adjoint element a in a unital C∗-algebra
has Sp(a) = {0, 1}, then a is a nonscalar idempotent.

29
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Lemma 2.4. Let π be a topologically irreducible representation of a C∗-algebra A in a
Hilbert space H. Then for any t ∈ B(H), a finite-dimensional subspace L ⊂ H and ε > 0,
there is an element a ∈ A such that ‖a‖ ≤ ‖t|L‖ and ‖(π(a)− t)|L‖ < ε.

Proof. Since π is topologically irreducible, then by Lemma 2.3 π(A)′ coincides with scalars,
hence π(A)′′ = B(H). That is why π(A) is dense in B(H) in the weak (strong) topology.
Without loss of generality, we can assume that ‖t|L‖ = 1. Let us put s = tpL, where
pL is the projection onto L. Since L is finite-dimensional, then, by Kaplansky’s density
theorem, there is b ∈ A such that ‖π(b)‖ 6 1 and ‖(π(b)− s)|L‖ < ε/2. Then there is an
element c ∈ A such that π(c) = π(b) and ‖c‖ < ‖π(b)‖(1 + ε/2) (see Theorem 1.50). Let
us put a := c

1+ε/2
. Then ‖a‖ 6 1 and

‖(π(a)− t)|L‖ 6 ‖(π(c)− t)|L‖+ ‖π(a)− π(c)‖ < ε/2 + ε/2 = ε.


