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Lemma 2.5. Let w be a topologically irreducible representation of the C*-algebra A in the
Hilbert space H. Then for any t € B(H), finite-dimensional subspace L C H and € > 0,
there is an element a € A such that w(a)|L = t| and ||a|| < ||t]] + €.

Proof. By the previous lemma, there is an element ay € A such that |lag| < ||¢|| and
|(m(ao) — )|l < /2. By induction we can find for each n is an element of a,, € A
such that ||a,| < 27" and |3 _o7(an) — t)pr]l] < 27" 'e. Indeed, suppose that the
elements are found for some n and all the smaller ones. Applying the previous lemma to

s = — > p_om(ay) + t, the same subspace L and 27" %, we find an element a,;; such
that [|a, ]| < 27" e and ||(372) 7(ar) — t)pr|| < 27" 2. Now let’s put a = S5 ay.
Then a € A and it is evident that ||a|| < ||t|| + & and a|, = ¢]. O

Theorem 2.6. Every topologically irreducible representation of a C*-algebra is alge-
braically irreducible.

Proof. Let’s assume the opposite Let V' C H be a non-closed invariant space, and V is
its closure. It is also an invariant subspace (since the action is continuous), so V = H.
Let us take n € H \ V, of norm 1 for example. Let £ € V is a nonzero vector, and ¢ is
an operator in H such that t£ = n. Then, by the previous lemma, there is an a € A such
that 7(a)é = n. Contradiction with the invariance of V. O

2.2 Positive linear functionals

Definition 2.7. Linear functional (we do not require continuity, see Lemma 2.10 below)
@ on the C*-algebra A is called positive, if p(a) > 0 for any a > 0. If a positive linear
functional is continuous and has norm 1, then it is called a state.

Example 2.8. If 7 is a representation of A in the Hilbert space H and £ € H, then the
functional ¢(a) := (&, 7(a)f) is positive. If A is unital and ||£|| = 1, then such ¢ is a state.

With every positive linear functional ¢ we can associate a sesquilinear form on A given
by the formula (a,b) := ¢(a*b), that is, the form (-,-) is linear in the second argument
is conjugate linear in the first argument. By definition of positivity of the functional
(a,a) = p(a*a) > 0 for any a € A. Therefore, by the following lemma it is Hermitian
symmetric: (b, a) = (a,b).

Lemma 2.9 (from linear algebra course). If a sesquilinear form has (a,a) € R for any
a, then it i1s Hermitian symmetric.

Proof. Let us write down the polarization identities
{(a+0b,a+b)=(a,a) + (a,0) + (b, a) + (b, b), (2.

(a+1ib,a+1ib) = (a,a) + (a,ib) + (ib, a) + (ib,ib) = (a,a) +i({a,b) — (b, a)) + (b, b). (2.2

From the first we obtain that (a, b)+ (b, a) is real, and from the second — that (a, b) — (b, a
is imaginary. So (a,b) = (b, a).
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Thus, (a, b) is a positive Hermitian form and, therefore, the Cauchy-(Schwartz-Bunyakovsky)
inequality holds for it: |{a,b)|* < (a,a)(b,b), that is, |¢(a*d)|* < p(a*a)p(b*D).

Lemma 2.10. Positive linear functionals are continuous. If uy is an approrimate unit
for A, then ||¢|| = limyea @(uy). In particular, if A is unital, then ||¢| = ¢(1).

Proof. Let us first consider the unital case. If 0 < a < 1, then since ¢ is positive,
we obtain that 0 < p(a) < ¢(1). For z € A with ||z|| < 1 we have 0 < z*z < 1,
so [p(x)]2 = |o(1-2)]? < o(1) - p(z*r) < ¢(1)?* by the Cauchy-Schwartz-Bunyakovsky
inequality. Thus, |¢| < ¢(1) < |l¢]|-

Now consider the non-unital case. Suppose that ¢ is not bounded on the unit ball A.
Then it is not restricted on the subset of the unit ball consisting of positive elements (since
any element a is decomposable into a linear combination of four positive elements with
norms not exceeding ||a||, see (1.7)). Thus, for every k € N there is a positive element
ar € A such that |[a|| < 1 and ¢(ay) > 2. Let us put a := > ;- % € A. Then for any
n € N we have a > >/ | 5 and

~ aj — p(a)
90(@)>so<22—k> = >
k=1

k=1

that is impossible. Thus, ¢ is bounded in the non-unital case as well.

Let m := limyep ¢(u3), and the limit exists since the direction net is increasing and
bounded by |¢|| from above. Then, for any x € A with ||z|| < 1 we have |p(z)| =
limyep [p(urx)| due to the continuity of ¢. Therefore, by the Cauchy-Schwartz-Bunya-
kovsky inequality we have |p(x)[* < ¢(u2)p(z*x) < mlp||. For any € > 0 we choose an
element z € A such that ||¢||* < |¢(z)|?*+e. Then ||¢||* < m|p||+e. Hence, ||o||* < ml¢||
and ||| < m. Since for any ¢ > 0 there is uy, for which ¢(u3 ) > m + ¢, we come to the
equality ||| = m. Since m < limyep @(uy) < [J@|| = m, we have limyep p(uy) = [l¢]|. O

Corollary 2.11. If ¢ is a state on a unital C*-algebra, then p(1) = 1.
Proof. By the previous lemma, 1 = ||¢]| = ¢(1). O

2.3 GNS-construction (Gelfand-Naimark-Segal)

Definition 2.12. A vector { € H is called cyclic for m: A — B(H), if m(A)¢ is dense in
H.

Theorem 2.13. Let ¢ be a positive linear functional on the C*-algebra A. Then there
exists a representation m, of the algebra A on the Hilbert space H and a cyclic vector
€p € H such that ||&|° = [l and (&, mp(a)é,) = ¢(a) for all a € A.

Proof. Let N :={a € A: ¢(a*a) =0}. Then N ={a € A: ¢o(b*a) =0 for all b € A} by
the Cauchy-Schwartz-Bunyakovsky inequality. Therefore N is closed as an intersection
kernels of continuous functionals a — ¢(b*a)). Besides, N is a left ideal, since p(b*an) =
o((a*b)*n) =0 for any a,b € A forn € N, soan € N.



2.4. REALIZATION OF C*-ALGEBRAS AS OPERATOR ALGEBRAS 33

Let us define an Hermitian inner product on the Banach quotient space A/N by the
formula (a,b) = @(a*b), where & denotes the coset class a+N. This product is well defined
because if ny,ny € N, then p((a + n1)*(b+ n2)) = @(a*d) + ¢((a + n1)*n2) + p(b*ny) =
©(a*b). Also (a,a) > 0 holds for a # 0. Let H be the Hilbert space obtained from A/N
by the completion w.r.t. the norm given by this inner product. Let us denote by
the representation of A on A/N (here we slightly expand the concept of representation
to a pre-Hilbert space) by the formula my(a)i = (ax), where & € A/N. If n € N
then (a(x +n)) = (ax), so my is well defined. It is involutive, because (my(a)z,y) =
o((ax)*y) = p(z*(a*y)) = (&, m0(a*)y) = (mo(a*)*t,y) and mo(a*)* = mp(a). In this case,
[0l < 1. Really,

= sup [m(a) z|* = sup p(z*a*az) <
<1 Jéll<1

I7o(a)

< sup [latallo(er) < [l
Z]I<1

Therefore 7 extends by continuity to a representation 7, of the algebra A on H.

If the algebra A is unital, then we set &, := 1. Then (€pymp(a)é,) = ¢(a) and &, is
cyclic since 7,(A)E, = A/N is dense in H. Finally, ||¢| = ¢(1) = ||,

For a general algebra A, consider its approximate unit uy. Let us show that u, is a
Cauchy directed net. Let us choose an € > 0. Then there is an index o € A such that
o(uq) > ol — e (since ||p|| = limyea p(uy) by Lemma 2.10). Now let us find an index
f € A such that 8 > « and [|uyu, — ua|| < € for any A > 5. Then

Re(p(uata)) = ¢(ua) + Re(p(urta — ua)) > [lof — 2.
That is why

lin — @all* = o((ur = ua)?) = @(u3) + p(ug) — 2Re(p(urta)) <
< o) + e(uz) — 2([loll — 2€) < de.

This means that for A, u > 3, we have
lix — || < [lin — tial| + [Jia — | < 4/,

Thus, @, is a Cauchy net. Let §, := limyep @y € H. Then (&, m,(a)€,) = limyep @(urauy)
@(a). Since m,(A)E, = A/N, then &, is cyclic. From a = 7m,(a), it follows that

lim 7w (ua)i = lim o () (@), = mp(0)€, =

for any @ € A/N, so the directed net m,(uy) strongly converges to 1. Therefore ||| =
limyen o(un) = limen (§p, mp(un)ép) = 166117 - =

2.4 Realization of (*-algebras as operator algebras
on Hilbert space

Corollary 2.14. Any state ¢ on a non-unital C*-algebra A admits a unique extension to
a state on AT,
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Proof. Let m, be the representation of A given by the GNS construction. Let us set
m,(1) = 1. Then 7, can be extended to a representation of A" and ¢(a) := (&,, m(a)&,)
is a state. It is unique, since ¢(1) = 1 must hold (Corollary 2.11). O

Problem 45. Let uy, A\ € A, be some approximate unit in a unital algebra. Prove that
1= lim)\eA Uy-

Lemma 2.15. Let ¢ : A — C be a continuous linear functional such that ||¢] = 1 =
limyep p(uy) for some approximate unit uy. Then ¢ is a state.

Proof. Let us first reduce the proof to the unital case. Let ¢ be some extension (by the
Hahn-Banach theorem) functional ¢ to a continuous functional on A™. Let ¢(1) =: a
Because the [|¢|| = 1, then || < 1. From inequality [|2uy — 1]] < 1 it follows that
|2 — a| = limyep |p(2uy — 1) < 1. Thus, @ = 1. This means that we can assume that A
is unital and (1) =1 (if A was unital from the very beginning, then we use the problem
45).

Let us now show that ¢(a) € R if a = a* (and therefore contained in [—||a]|, [|a||]).
Let a — self-adjoint element of norm 1. Then |a £ inl|]? = |a® + n?1| = n? + 1,
so |p(a) £in| < vn?+1 for any n € N. This means that ¢(a) is contained in the
intersection of all disks with centers at +in and radii v/n2 + 1. This intersection is equal
to the real interval [—1,1].

If 0 <a <1, then ||2a — 1|] < 1. Applying the previous reasoning to the self-adjoint
element 2a — 1, we obtain that —1 < 2p(a) — 1 < 1, so p(a) > 0 and ¢ is positive. [



