2.2. POSITIVE LINEAR FUNCTIONALS

Lecture 7

Lemma 2.5. Let π be a topologically irreducible representation of the C*-algebra A in the Hilbert space H. Then for any $t \in \mathbb{B}(H)$, finite-dimensional subspace $L \subset H$ and $\varepsilon > 0$, there is an element $a \in A$ such that $\pi(a)|L = t|_L$ and $||a|| \leq ||t|| + \varepsilon$.

Proof. By the previous lemma, there is an element $a_0 \in A$ such that $||a_0|| \leq ||t||$ and $||(\pi(a_0) - t)|_L|| < \varepsilon/2$. By induction we can find for each n is an element of $a_n \in A$ such that $||a_n|| \leq 2^{-n}\varepsilon$ and $||(\sum_{k=0}^n \pi(a_n) - t)p_L||| < 2^{-n-1}\varepsilon$. Indeed, suppose that the elements are found for some n and all the smaller ones. Applying the previous lemma to $s = -\sum_{k=0}^n \pi(a_k) + t$, the same subspace L and $2^{-n-2}\varepsilon$, we find an element a_{n+1} such that $||a_{n+1}|| \leq 2^{-n-1}\varepsilon$ and $||(\sum_{k=1}^{n+1} \pi(a_k) - t)p_L|| < 2^{-n-2}\varepsilon$. Now let's put $a = \sum_{k=0}^{\infty} a_k$. Then $a \in A$ and it is evident that $||a|| \leq ||t|| + \varepsilon$ and $a|_L = t|_L$.

Theorem 2.6. Every topologically irreducible representation of a C^* -algebra is algebraically irreducible.

Proof. Let's assume the opposite Let $V \subset H$ be a non-closed invariant space, and \overline{V} is its closure. It is also an invariant subspace (since the action is continuous), so $\overline{V} = H$. Let us take $\eta \in H \setminus V$, of norm 1 for example. Let $\xi \in V$ is a nonzero vector, and t is an operator in H such that $t\xi = \eta$. Then, by the previous lemma, there is an $a \in A$ such that $\pi(a)\xi = \eta$. Contradiction with the invariance of V.

2.2 Positive linear functionals

Definition 2.7. Linear functional (we do not require continuity, see Lemma 2.10 below) φ on the C^* -algebra A is called *positive*, if $\varphi(a) \ge 0$ for any $a \ge 0$. If a positive linear functional is continuous and has norm 1, then it is called a *state*.

Example 2.8. If π is a representation of A in the Hilbert space H and $\xi \in H$, then the functional $\varphi(a) := (\xi, \pi(a)\xi)$ is positive. If A is unital and $\|\xi\| = 1$, then such φ is a state.

With every positive linear functional φ we can associate a sesquilinear form on A given by the formula $\langle a, b \rangle := \varphi(a^*b)$, that is, the form $\langle \cdot, \cdot \rangle$ is linear in the second argument is conjugate linear in the first argument. By definition of positivity of the functional $\langle a, a \rangle = \varphi(a^*a) \ge 0$ for any $a \in A$. Therefore, by the following lemma it is Hermitian symmetric: $\langle b, a \rangle = \overline{\langle a, b \rangle}$.

Lemma 2.9 (from linear algebra course). If a sesquilinear form has $\langle a, a \rangle \in \mathbb{R}$ for any a, then it is Hermitian symmetric.

Proof. Let us write down the polarization identities

$$\langle a+b, a+b \rangle = \langle a, a \rangle + \langle a, b \rangle + \langle b, a \rangle + \langle b, b \rangle, \qquad (2.1)$$

$$\langle a+ib, a+ib \rangle = \langle a, a \rangle + \langle a, ib \rangle + \langle ib, a \rangle + \langle ib, ib \rangle = \langle a, a \rangle + i(\langle a, b \rangle - \langle b, a \rangle) + \langle b, b \rangle.$$
(2.2)

From the first we obtain that $\langle a, b \rangle + \langle b, a \rangle$ is real, and from the second — that $\langle a, b \rangle - \langle b, a \rangle$ is imaginary. So $\overline{\langle a, b \rangle} = \langle b, a \rangle$.

Thus, $\langle a, b \rangle$ is a positive Hermitian form and, therefore, the Cauchy-(Schwartz-Bunyakovsky) inequality holds for it: $|\langle a, b \rangle|^2 \leq \langle a, a \rangle \langle b, b \rangle$, that is, $|\varphi(a^*b)|^2 \leq \varphi(a^*a)\varphi(b^*b)$.

Lemma 2.10. Positive linear functionals are continuous. If u_{λ} is an approximate unit for A, then $\|\varphi\| = \lim_{\lambda \in \Lambda} \varphi(u_{\lambda})$. In particular, if A is unital, then $\|\varphi\| = \varphi(1)$.

Proof. Let us first consider the unital case. If $0 \leq a \leq 1$, then since φ is positive, we obtain that $0 \leq \varphi(a) \leq \varphi(1)$. For $x \in A$ with $||x|| \leq 1$ we have $0 \leq x^*x \leq 1$, so $|\varphi(x)|^2 = |\varphi(1 \cdot x)|^2 \leq \varphi(1) \cdot \varphi(x^*x) \leq \varphi(1)^2$ by the Cauchy-Schwartz-Bunyakovsky inequality. Thus, $||\varphi|| \leq \varphi(1) \leq ||\varphi||$.

Now consider the non-unital case. Suppose that φ is not bounded on the unit ball A. Then it is not restricted on the subset of the unit ball consisting of positive elements (since any element a is decomposable into a linear combination of four positive elements with norms not exceeding ||a||, see (1.7)). Thus, for every $k \in \mathbb{N}$ there is a positive element $a_k \in A$ such that $||a_k|| \leq 1$ and $\varphi(a_k) > 2^k$. Let us put $a := \sum_{k=1}^{\infty} \frac{a_k}{2^k} \in A$. Then for any $n \in \mathbb{N}$ we have $a \geq \sum_{k=1}^{n} \frac{a_k}{2^k}$ and

$$\varphi(a) \ge \varphi\left(\sum_{k=1}^{n} \frac{a_k}{2^k}\right) = \sum_{k=1}^{n} \frac{\varphi(a_k)}{2^k} > n,$$

that is impossible. Thus, φ is bounded in the non-unital case as well.

Let $m := \lim_{\lambda \in \Lambda} \varphi(u_{\lambda}^2)$, and the limit exists since the direction net is increasing and bounded by $\|\varphi\|$ from above. Then, for any $x \in A$ with $\|x\| \leq 1$ we have $|\varphi(x)| = \lim_{\lambda \in \Lambda} |\varphi(u_{\lambda}x)|$ due to the continuity of φ . Therefore, by the Cauchy-Schwartz-Bunyakovsky inequality we have $|\varphi(x)|^2 \leq \varphi(u_{\lambda}^2)\varphi(x^*x) \leq m \|\varphi\|$. For any $\varepsilon > 0$ we choose an element $x \in A$ such that $\|\varphi\|^2 < |\varphi(x)|^2 + \varepsilon$. Then $\|\varphi\|^2 < m \|\varphi\| + \varepsilon$. Hence, $\|\varphi\|^2 \leq m \|\varphi\|$ and $\|\varphi\| \leq m$. Since for any $\varepsilon > 0$ there is u_{λ_0} for which $\varphi(u_{\lambda_0}^2) > m + \varepsilon$, we come to the equality $\|\varphi\| = m$. Since $m \leq \lim_{\lambda \in \Lambda} \varphi(u_{\lambda}) \leq \|\varphi\| = m$, we have $\lim_{\lambda \in \Lambda} \varphi(u_{\lambda}) = \|\varphi\|$. \Box

Corollary 2.11. If φ is a state on a unital C^{*}-algebra, then $\varphi(1) = 1$.

Proof. By the previous lemma, $1 = \|\varphi\| = \varphi(1)$.

2.3 GNS-construction (Gelfand-Naimark-Segal)

Definition 2.12. A vector $\xi \in H$ is called *cyclic* for $\pi : A \to \mathbb{B}(H)$, if $\pi(A)\xi$ is dense in H.

Theorem 2.13. Let φ be a positive linear functional on the C^{*}-algebra A. Then there exists a representation π_{φ} of the algebra A on the Hilbert space H and a cyclic vector $\xi_{\varphi} \in H$ such that $\|\xi_{\varphi}\|^2 = \|\varphi\|$ and $(\xi_{\varphi}, \pi_{\varphi}(a)\xi_{\varphi}) = \varphi(a)$ for all $a \in A$.

Proof. Let $N := \{a \in A : \varphi(a^*a) = 0\}$. Then $N = \{a \in A : \varphi(b^*a) = 0 \text{ for all } b \in A\}$ by the Cauchy-Schwartz-Bunyakovsky inequality. Therefore N is closed as an intersection kernels of continuous functionals $a \mapsto \varphi(b^*a)$. Besides, N is a left ideal, since $\varphi(b^*an) = \varphi((a^*b)^*n) = 0$ for any $a, b \in A$ for $n \in N$, so $an \in N$.

Let us define an Hermitian inner product on the Banach quotient space A/N by the formula $(\dot{a}, \dot{b}) = \varphi(a^*b)$, where \dot{a} denotes the coset class a+N. This product is well defined because if $n_1, n_2 \in N$, then $\varphi((a+n_1)^*(b+n_2)) = \varphi(a^*b) + \varphi((a+n_1)^*n_2) + \overline{\varphi(b^*n_1)} = \varphi(a^*b)$. Also $(\dot{a}, \dot{a}) > 0$ holds for $\dot{a} \neq 0$. Let H be the Hilbert space obtained from A/N by the completion w.r.t. the norm given by this inner product. Let us denote by π_0 the representation of A on A/N (here we slightly expand the concept of representation to a pre-Hilbert space) by the formula $\pi_0(a)\dot{x} = (ax)^{\uparrow}$, where $\dot{x} \in A/N$. If $n \in N$ then $(a(x+n))^{\cdot} = (ax)^{\cdot}$, so π_0 is well defined. It is involutive, because $(\pi_0(a)\dot{x}, \dot{y}) = \varphi((ax)^*y) = \varphi(x^*(a^*y)) = (\dot{x}, \pi_0(a^*)\dot{y}) = (\pi_0(a^*)^*\dot{x}, \dot{y})$ and $\pi_0(a^*)^* = \pi_0(a)$. In this case, $\|\pi_0\| \leq 1$. Really,

$$\begin{aligned} \|\pi_0(a)\|^2 &= \sup_{\|\dot{x}\| \leq 1} \|\pi_0(a) \cdot x\|^2 = \sup_{\|\dot{x}\| \leq 1} \varphi(x^* a^* a x) \leq \\ &\leq \sup_{\|\dot{x}\| \leq 1} \|a^* a\|\varphi(x^* x) \leq \|a\|^2. \end{aligned}$$

Therefore π_0 extends by continuity to a representation π_{φ} of the algebra A on H.

If the algebra A is unital, then we set $\xi_{\varphi} := 1$. Then $(\xi_{\varphi}, \pi_{\varphi}(a)\xi_{\varphi}) = \varphi(a)$ and ξ_{φ} is cyclic since $\pi_{\varphi}(A)\xi_{\varphi} = A/N$ is dense in H. Finally, $\|\varphi\| = \varphi(1) = \|\xi_{\varphi}\|^2$.

For a general algebra A, consider its approximate unit u_{λ} . Let us show that \dot{u}_{λ} is a Cauchy directed net. Let us choose an $\varepsilon > 0$. Then there is an index $\alpha \in \Lambda$ such that $\varphi(u_{\alpha}) > \|\varphi\| - \varepsilon$ (since $\|\varphi\| = \lim_{\lambda \in \Lambda} \varphi(u_{\lambda})$ by Lemma 2.10). Now let us find an index $\beta \in \Lambda$ such that $\beta \ge \alpha$ and $\|u_{\lambda}u_{\alpha} - u_{\alpha}\| < \varepsilon$ for any $\lambda \ge \beta$. Then

$$\operatorname{Re}(\varphi(u_{\lambda}u_{\alpha})) = \varphi(u_{\alpha}) + \operatorname{Re}(\varphi(u_{\lambda}u_{\alpha} - u_{\alpha})) > \|\varphi\| - 2\varepsilon.$$

That is why

$$\begin{aligned} \|\dot{u}_{\lambda} - \dot{u}_{\alpha}\|^2 &= \varphi((u_{\lambda} - u_{\alpha})^2) = \varphi(u_{\lambda}^2) + \varphi(u_{\alpha}^2) - 2\operatorname{Re}(\varphi(u_{\lambda}u_{\alpha})) \leqslant \\ &\leqslant \varphi(u_{\lambda}^2) + \varphi(u_{\alpha}^2) - 2(\|\varphi\| - 2\varepsilon) \leqslant 4\varepsilon. \end{aligned}$$

This means that for $\lambda, \mu \ge \beta$, we have

$$\|\dot{u}_{\lambda} - \dot{u}_{\mu}\| \leqslant \|\dot{u}_{\lambda} - \dot{u}_{\alpha}\| + \|\dot{u}_{\alpha} - \dot{u}_{\mu}\| \leqslant 4\varepsilon^{1/2}.$$

Thus, \dot{u}_{λ} is a Cauchy net. Let $\xi_{\varphi} := \lim_{\lambda \in \Lambda} \dot{u}_{\lambda} \in H$. Then $(\xi_{\varphi}, \pi_{\varphi}(a)\xi_{\varphi}) = \lim_{\lambda \in \Lambda} \varphi(u_{\lambda}au_{\lambda}) = \varphi(a)$. Since $\pi_{\varphi}(A)\xi_{\varphi} = A/N$, then ξ_{φ} is cyclic. From $\dot{a} = \pi_{\varphi}(a)\xi_{\varphi}$ it follows that

$$\lim_{\lambda \in \Lambda} \pi_{\varphi}(u_{\lambda}) \dot{a} = \lim_{\lambda \in \Lambda} \pi_{\varphi}(u_{\lambda}) \pi_{\varphi}(a) \xi_{\varphi} = \pi_{\varphi}(a) \xi_{\varphi} = \dot{a}$$

for any $\dot{a} \in A/N$, so the directed net $\pi_{\varphi}(u_{\lambda})$ strongly converges to 1. Therefore $\|\varphi\| = \lim_{\lambda \in \Lambda} \varphi(u_{\lambda}) = \lim_{\lambda \in \Lambda} (\xi_{\varphi}, \pi_{\varphi}(u_{\lambda})\xi_{\varphi}) = \|\xi_{\varphi}\|^2$. \Box

2.4 Realization of C^* -algebras as operator algebras on Hilbert space

Corollary 2.14. Any state φ on a non-unital C^* -algebra A admits a unique extension to a state on A^+ .

Proof. Let π_{φ} be the representation of A given by the GNS construction. Let us set $\pi_{\varphi}(1) = 1$. Then π_{φ} can be extended to a representation of A^+ and $\tilde{\varphi}(a) := (\xi_{\varphi}, \pi(a)\xi_{\varphi})$ is a state. It is unique, since $\tilde{\varphi}(1) = 1$ must hold (Corollary 2.11).

Problem 45. Let u_{λ} , $\lambda \in \Lambda$, be some approximate unit in a unital algebra. Prove that $1 = \lim_{\lambda \in \Lambda} u_{\lambda}$.

Lemma 2.15. Let $\varphi : A \to \mathbb{C}$ be a continuous linear functional such that $\|\varphi\| = 1 = \lim_{\lambda \in \Lambda} \varphi(u_{\lambda})$ for some approximate unit u_{λ} . Then φ is a state.

Proof. Let us first reduce the proof to the unital case. Let $\tilde{\varphi}$ be some extension (by the Hahn-Banach theorem) functional φ to a continuous functional on A^+ . Let $\tilde{\varphi}(1) =: \alpha$. Because the $\|\tilde{\varphi}\| = 1$, then $|\alpha| \leq 1$. From inequality $\|2u_{\lambda} - 1\| \leq 1$ it follows that $|2 - \alpha| = \lim_{\lambda \in \Lambda} |\varphi(2u_{\lambda} - 1)| \leq 1$. Thus, $\alpha = 1$. This means that we can assume that A is unital and $\varphi(1) = 1$ (if A was unital from the very beginning, then we use the problem 45).

Let us now show that $\varphi(a) \in \mathbb{R}$ if $a = a^*$ (and therefore contained in [-||a||, ||a||]). Let a — self-adjoint element of norm 1. Then $||a \pm in1||^2 = ||a^2 + n^21|| = n^2 + 1$, so $|\varphi(a) \pm in| \leq \sqrt{n^2 + 1}$ for any $n \in \mathbb{N}$. This means that $\varphi(a)$ is contained in the intersection of all disks with centers at $\pm in$ and radii $\sqrt{n^2 + 1}$. This intersection is equal to the real interval [-1, 1].

If $0 \le a \le 1$, then $||2a - 1|| \le 1$. Applying the previous reasoning to the self-adjoint element 2a - 1, we obtain that $-1 \le 2\varphi(a) - 1 \le 1$, so $\varphi(a) \ge 0$ and φ is positive. \Box