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Lecture 7

Lemma 2.5. Let π be a topologically irreducible representation of the C∗-algebra A in the
Hilbert space H. Then for any t ∈ B(H), finite-dimensional subspace L ⊂ H and ε > 0,
there is an element a ∈ A such that π(a)|L = t|L and ‖a‖ 6 ‖t‖+ ε.

Proof. By the previous lemma, there is an element a0 ∈ A such that ‖a0‖ 6 ‖t‖ and
‖(π(a0) − t)|L‖ < ε/2. By induction we can find for each n is an element of an ∈ A
such that ‖an‖ 6 2−nε and ‖(

∑n
k=0 π(an) − t)pL|‖ < 2−n−1ε. Indeed, suppose that the

elements are found for some n and all the smaller ones. Applying the previous lemma to
s = −

∑n
k=0 π(ak) + t, the same subspace L and 2−n−2ε, we find an element an+1 such

that ‖an+1‖ 6 2−n−1ε and ‖(
∑n+1

k=1 π(ak) − t)pL‖ < 2−n−2ε. Now let’s put a =
∑∞

k=0 ak.
Then a ∈ A and it is evident that ‖a‖ 6 ‖t‖+ ε and a|L = t|L.

Theorem 2.6. Every topologically irreducible representation of a C∗-algebra is alge-
braically irreducible.

Proof. Let’s assume the opposite Let V ⊂ H be a non-closed invariant space, and V is
its closure. It is also an invariant subspace (since the action is continuous), so V = H.
Let us take η ∈ H \ V , of norm 1 for example. Let ξ ∈ V is a nonzero vector, and t is
an operator in H such that tξ = η. Then, by the previous lemma, there is an a ∈ A such
that π(a)ξ = η. Contradiction with the invariance of V .

2.2 Positive linear functionals

Definition 2.7. Linear functional (we do not require continuity, see Lemma 2.10 below)
ϕ on the C∗-algebra A is called positive, if ϕ(a) > 0 for any a > 0. If a positive linear
functional is continuous and has norm 1, then it is called a state.

Example 2.8. If π is a representation of A in the Hilbert space H and ξ ∈ H, then the
functional ϕ(a) := (ξ, π(a)ξ) is positive. If A is unital and ‖ξ‖ = 1, then such ϕ is a state.

With every positive linear functional ϕ we can associate a sesquilinear form on A given
by the formula 〈a, b〉 := ϕ(a∗b), that is, the form 〈·, ·〉 is linear in the second argument
is conjugate linear in the first argument. By definition of positivity of the functional
〈a, a〉 = ϕ(a∗a) > 0 for any a ∈ A. Therefore, by the following lemma it is Hermitian
symmetric: 〈b, a〉 = 〈a, b〉.

Lemma 2.9 (from linear algebra course). If a sesquilinear form has 〈a, a〉 ∈ R for any
a, then it is Hermitian symmetric.

Proof. Let us write down the polarization identities

〈a+ b, a+ b〉 = 〈a, a〉+ 〈a, b〉+ 〈b, a〉+ 〈b, b〉, (2.1)

〈a+ ib, a+ ib〉 = 〈a, a〉+ 〈a, ib〉+ 〈ib, a〉+ 〈ib, ib〉 = 〈a, a〉+ i(〈a, b〉− 〈b, a〉) + 〈b, b〉. (2.2)

From the first we obtain that 〈a, b〉+〈b, a〉 is real, and from the second — that 〈a, b〉−〈b, a〉
is imaginary. So 〈a, b〉 = 〈b, a〉.
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Thus, 〈a, b〉 is a positive Hermitian form and, therefore, the Cauchy-(Schwartz-Bunyakovsky)
inequality holds for it: |〈a, b〉|2 ≤ 〈a, a〉〈b, b〉, that is, |ϕ(a∗b)|2 6 ϕ(a∗a)ϕ(b∗b).

Lemma 2.10. Positive linear functionals are continuous. If uλ is an approximate unit
for A, then ‖ϕ‖ = limλ∈Λ ϕ(uλ). In particular, if A is unital, then ‖ϕ‖ = ϕ(1).

Proof. Let us first consider the unital case. If 0 6 a 6 1, then since ϕ is positive,
we obtain that 0 6 ϕ(a) 6 ϕ(1). For x ∈ A with ‖x‖ 6 1 we have 0 6 x∗x 6 1,
so |ϕ(x)|2 = |ϕ(1 · x)|2 6 ϕ(1) · ϕ(x∗x) 6 ϕ(1)2 by the Cauchy-Schwartz-Bunyakovsky
inequality. Thus, ‖ϕ‖ 6 ϕ(1) 6 ‖ϕ‖.

Now consider the non-unital case. Suppose that ϕ is not bounded on the unit ball A.
Then it is not restricted on the subset of the unit ball consisting of positive elements (since
any element a is decomposable into a linear combination of four positive elements with
norms not exceeding ‖a‖, see (1.7)). Thus, for every k ∈ N there is a positive element
ak ∈ A such that ‖ak‖ ≤ 1 and ϕ(ak) > 2k. Let us put a :=

∑∞
k=1

ak
2k
∈ A. Then for any

n ∈ N we have a >
∑n

k=1
ak
2k

and

ϕ(a) > ϕ

(
n∑
k=1

ak
2k

)
=

n∑
k=1

ϕ(ak)

2k
> n,

that is impossible. Thus, ϕ is bounded in the non-unital case as well.
Let m := limλ∈Λ ϕ(u2

λ), and the limit exists since the direction net is increasing and
bounded by ‖ϕ‖ from above. Then, for any x ∈ A with ‖x‖ 6 1 we have |ϕ(x)| =
limλ∈Λ |ϕ(uλx)| due to the continuity of ϕ. Therefore, by the Cauchy-Schwartz-Bunya-
kovsky inequality we have |ϕ(x)|2 6 ϕ(u2

λ)ϕ(x∗x) 6 m‖ϕ‖. For any ε > 0 we choose an
element x ∈ A such that ‖ϕ‖2 < |ϕ(x)|2+ε. Then ‖ϕ‖2 < m‖ϕ‖+ε. Hence, ‖ϕ‖2 6 m‖ϕ‖
and ‖ϕ‖ 6 m. Since for any ε > 0 there is uλ0 for which ϕ(u2

λ0
) > m+ ε, we come to the

equality ‖ϕ‖ = m. Since m 6 limλ∈Λ ϕ(uλ) 6 ‖ϕ‖ = m, we have limλ∈Λ ϕ(uλ) = ‖ϕ‖.

Corollary 2.11. If ϕ is a state on a unital C∗-algebra, then ϕ(1) = 1.

Proof. By the previous lemma, 1 = ‖ϕ‖ = ϕ(1).

2.3 GNS-construction (Gelfand-Naimark-Segal)

Definition 2.12. A vector ξ ∈ H is called cyclic for π : A→ B(H), if π(A)ξ is dense in
H.

Theorem 2.13. Let ϕ be a positive linear functional on the C∗-algebra A. Then there
exists a representation πϕ of the algebra A on the Hilbert space H and a cyclic vector
ξϕ ∈ H such that ‖ξϕ‖2 = ‖ϕ‖ and (ξϕ, πϕ(a)ξϕ) = ϕ(a) for all a ∈ A.

Proof. Let N := {a ∈ A : ϕ(a∗a) = 0}. Then N = {a ∈ A : ϕ(b∗a) = 0 for all b ∈ A} by
the Cauchy-Schwartz-Bunyakovsky inequality. Therefore N is closed as an intersection
kernels of continuous functionals a 7→ ϕ(b∗a)). Besides, N is a left ideal, since ϕ(b∗an) =
ϕ((a∗b)∗n) = 0 for any a, b ∈ A for n ∈ N , so an ∈ N .
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Let us define an Hermitian inner product on the Banach quotient space A/N by the
formula (ȧ, ḃ) = ϕ(a∗b), where ȧ denotes the coset class a+N . This product is well defined
because if n1, n2 ∈ N , then ϕ((a + n1)∗(b + n2)) = ϕ(a∗b) + ϕ((a + n1)∗n2) + ϕ(b∗n1) =
ϕ(a∗b). Also (ȧ, ȧ) > 0 holds for ȧ 6= 0. Let H be the Hilbert space obtained from A/N
by the completion w.r.t. the norm given by this inner product. Let us denote by π0

the representation of A on A/N (here we slightly expand the concept of representation
to a pre-Hilbert space) by the formula π0(a)ẋ = (ax)·, where ẋ ∈ A/N . If n ∈ N
then (a(x + n))· = (ax)·, so π0 is well defined. It is involutive, because (π0(a)ẋ, ẏ) =
ϕ((ax)∗y) = ϕ(x∗(a∗y)) = (ẋ, π0(a∗)ẏ) = (π0(a∗)∗ẋ, ẏ) and π0(a∗)∗ = π0(a). In this case,
‖π0‖ 6 1. Really,

‖π0(a)‖2 = sup
‖ẋ‖61

‖π0(a) · x‖2 = sup
‖ẋ‖61

ϕ(x∗a∗ax) 6

6 sup
‖ẋ‖61

‖a∗a‖ϕ(x∗x) 6 ‖a‖2.

Therefore π0 extends by continuity to a representation πϕ of the algebra A on H.
If the algebra A is unital, then we set ξϕ := 1̇. Then (ξϕ, πϕ(a)ξϕ) = ϕ(a) and ξϕ is

cyclic since πϕ(A)ξϕ = A/N is dense in H. Finally, ‖ϕ‖ = ϕ(1) = ‖ξϕ‖2.
For a general algebra A, consider its approximate unit uλ. Let us show that u̇λ is a

Cauchy directed net. Let us choose an ε > 0. Then there is an index α ∈ Λ such that
ϕ(uα) > ‖ϕ‖ − ε (since ‖ϕ‖ = limλ∈Λ ϕ(uλ) by Lemma 2.10). Now let us find an index
β ∈ Λ such that β > α and ‖uλuα − uα‖ < ε for any λ > β. Then

Re(ϕ(uλuα)) = ϕ(uα) + Re(ϕ(uλuα − uα)) > ‖ϕ‖ − 2ε.

That is why

‖u̇λ − u̇α‖2 = ϕ((uλ − uα)2) = ϕ(u2
λ) + ϕ(u2

α)− 2Re(ϕ(uλuα)) 6

6 ϕ(u2
λ) + ϕ(u2

α)− 2(‖ϕ‖ − 2ε) 6 4ε.

This means that for λ, µ > β, we have

‖u̇λ − u̇µ‖ 6 ‖u̇λ − u̇α‖+ ‖u̇α − u̇µ‖ 6 4ε1/2.

Thus, u̇λ is a Cauchy net. Let ξϕ := limλ∈Λ u̇λ ∈ H. Then (ξϕ, πϕ(a)ξϕ) = limλ∈Λ ϕ(uλauλ) =
ϕ(a). Since πϕ(A)ξϕ = A/N , then ξϕ is cyclic. From ȧ = πϕ(a)ξϕ it follows that

lim
λ∈Λ

πϕ(uλ)ȧ = lim
λ∈Λ

πϕ(uλ)πϕ(a)ξϕ = πϕ(a)ξϕ = ȧ

for any ȧ ∈ A/N , so the directed net πϕ(uλ) strongly converges to 1. Therefore ‖ϕ‖ =
limλ∈Λ ϕ(uλ) = limλ∈Λ(ξϕ, πϕ(uλ)ξϕ) = ‖ξϕ‖2 .

2.4 Realization of C∗-algebras as operator algebras

on Hilbert space

Corollary 2.14. Any state ϕ on a non-unital C∗-algebra A admits a unique extension to
a state on A+.



34 CHAPTER 2. REPRESENTATIONS OF C∗-ALGEBRAS

Proof. Let πϕ be the representation of A given by the GNS construction. Let us set
πϕ(1) = 1. Then πϕ can be extended to a representation of A+ and ϕ̃(a) := (ξϕ, π(a)ξϕ)
is a state. It is unique, since ϕ̃(1) = 1 must hold (Corollary 2.11).

Problem 45. Let uλ, λ ∈ Λ, be some approximate unit in a unital algebra. Prove that
1 = limλ∈Λ uλ.

Lemma 2.15. Let ϕ : A → C be a continuous linear functional such that ‖ϕ‖ = 1 =
limλ∈Λ ϕ(uλ) for some approximate unit uλ. Then ϕ is a state.

Proof. Let us first reduce the proof to the unital case. Let ϕ̃ be some extension (by the
Hahn-Banach theorem) functional ϕ to a continuous functional on A+. Let ϕ̃(1) =: α.
Because the ‖ϕ̃‖ = 1, then |α| 6 1. From inequality ‖2uλ − 1‖ 6 1 it follows that
|2− α| = limλ∈Λ |ϕ(2uλ − 1)| 6 1. Thus, α = 1. This means that we can assume that A
is unital and ϕ(1) = 1 (if A was unital from the very beginning, then we use the problem
45).

Let us now show that ϕ(a) ∈ R if a = a∗ (and therefore contained in [−‖a‖, ‖a‖]).
Let a — self-adjoint element of norm 1. Then ‖a ± in1‖2 = ‖a2 + n21‖ = n2 + 1,
so |ϕ(a) ± in| 6

√
n2 + 1 for any n ∈ N. This means that ϕ(a) is contained in the

intersection of all disks with centers at ±in and radii
√
n2 + 1. This intersection is equal

to the real interval [−1, 1].
If 0 ≤ a ≤ 1, then ‖2a − 1‖ ≤ 1. Applying the previous reasoning to the self-adjoint

element 2a− 1, we obtain that −1 6 2ϕ(a)− 1 6 1, so ϕ(a) > 0 and ϕ is positive.


