Chapter 2

Representations of C*-algebras

2.1 Definition and basic properties

Definition 2.1. A representation of a C*-algebra A on a Hilbert space H is a x-homomorphism
from A to B(H).

Definition 2.2. A representation of a C*-algebra A is called algebraically irreducible, if
there is no proper invariant linear subspace in H (when operated by operators from the
image of the representation). A representation is topologically irreducible, if there is no
proper closed invariant subspaces.

We will see soon that for C*-algebras these two concepts coincide.
Lemma 2.3. A representation m is topologically irreducible if and only if m(A) = C1.

Proof. 1f m(A)’ contains something other than scalars, then it also contains a self-adjoint
non-scalar operator (this immediately follows from the expansion of a non-scalar operator
into a linear combination of two self-adjoint ones a = % + - %) Using Borel
functional calculus (see note 1.64) for this self-adjoint operator b, we can obtain a proper
projection p in m(A)’. Namely, if an operator is nonscalar, then it has at least two distinct
points in the spectrum, say, ty and ¢;, and we need to consider a Borel function f, taking
values 0 and 1, and f(tg) = 0, f(t1) = 1 ( task 43). (You can also not use calculus,
but simply take suitable spectral projections from the standard spectral theorem, that by
construction have the necessary commutation properties). Then pH is a closed invariant
subspace, since p € w(A)'.

Conversely, let L C H be a closed m(A)-invariant subspace, and p € B(H) is a pro-
jection onto this subspace. Then 7(a)p = pm(a)p for any a € A. Therefore pr(a) =

(m(a*)p)* = (pr(a*)p)* = pr(a)p = w(a)p and p € 7(A)". Moreover, p is not a scalar. [

Problem 43. Verify in the proof above that f(b) is a proper projection, since f? = f
and Sp((5)) = {0, 1}
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Problem 44. Prove a more general fact: if a self-adjoint element a in a unital C*-algebra
has Sp(a) = {0, 1}, then a is a nonscalar idempotent.

Lemma 2.4. Let w be a topologically irreducible representation of a C*-algebra A in a
Hilbert space H. Then for anyt € B(H), a finite-dimensional subspace L C H and e > 0,
there is an element a € A such that ||a|| < ||t|L|| and ||(7(a) — )| < €.

Proof. Since 7 is topologically irreducible, then by Lemma 2.3 w(A) coincides with scalars,
hence w(A)” = B(H). That is why 7(A) is dense in B(H) in the weak (strong) topology.
Without loss of generality, we can assume that ||t|.|| = 1. Let us put s = tpr, where
pr, is the projection onto L. Since L is finite-dimensional, then, by Kaplansky’s density
theorem, there is b € A such that ||7(b)|| < 1 and ||(7(b) — s)|z|]| < €/2. Then there is an
element ¢ € A such that w(c) = 7(b) and ||c|| < ||7(b)||(1 4+ €/2) (see Theorem 1.50). Let

us put a := 7% Then |la]] < 1 and

[(m(a) = DIl < [(w(e) = DIl + [I7(a) = 7o)l <e/2+e/2 =
O

Lemma 2.5. Let m be a topologically irreducible representation of the C*-algebra A in the
Hilbert space H. Then for any t € B(H), finite-dimensional subspace L C H and e > 0,
there is an element a € A such that w(a)|L = t|; and ||a|| < ||t]] + €.

Proof. By the previous lemma, there is an element ay € A such that ||ag|| < ||¢|| and
|(m(ao) —t)|L|| < e/2. By induction we can find for each n, an element a,, € A such that
lan]| < 27" and |3 _om(an) — t)prlll < 27" 'e. Indeed, suppose that the elements
are found for some n and all the smaller ones. Applying the previous lemma to s =
— > h_om(ax) +t, the same subspace L and 27" 2¢, we find an element a,; such that
ani]l < 27" e and ||(OS3F] m(ar) — t)pr|| < 27" 2. Now let’s put a = 3 7o ap. Then
a € A and it is evident that ||a]| < ||t|| + ¢ and a|p = #|L. O

Theorem 2.6. FEvery topologically irreducible representation of a C*-algebra is alge-
braically irreducible.

Proof. Let’s assume the opposite Let V' C H be a non-closed invariant space, and V is
its closure. It is also an invariant subspace (since the action is continuous), so V = H.
Let us take n € H \ V, of norm 1 for example. Let £ € V' is a nonzero vector, and ¢ is an
operator on H such that t£ = 7. Then, by the previous lemma, there is an a € A such
that 7(a)¢ = n. Contradiction with the invariance of V. O

2.2 Positive linear functionals
Definition 2.7. Linear functional (we do not require continuity, see Lemma 2.10 below)

¢ on the C*-algebra A is called positive, if ¢(a) > 0 for any a > 0. If a positive linear
functional is continuous and has norm 1, then it is called a state.
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Example 2.8. If 7 is a representation of A in the Hilbert space H and £ € H, then the
functional ¢(a) := (£, m(a)f) is positive. If A is unital and ||£]| = 1, then such ¢ is a state.

With every positive linear functional ¢ we can associate a sesquilinear form on A given
by the formula (a,b) := ¢(a*b), that is, the form (-,-) is linear in the second argument
is conjugate linear in the first argument. By definition of positivity of the functional
(a,a) = p(a*a) = 0 for any a € A. Therefore, by the following lemma it is Hermitian
symmetric: (b, a) = (a, b).

Lemma 2.9 (from linear algebra course). If a sesquilinear form has (a,a) € R for any
a, then it 1s Hermitian symmetric.

Proof. Let us write down the polarization identities
(a+b,a+0b) = {a,a) + {(a,b) + (b,a) + (b, b), (2.1

)
(a+1b,a+ib) = (a,a) + (a,ib) + (ib,a) + (b, ib) = (a,a)+i({a,b) — (b,a)) + (b,b). (2.2)

From the first we obtain that (a, b)+ (b, a) is real, and from the second — that (a, b) — (b, a)
is imaginary. So (a,b) = (b, a). O

Thus, (a, b) is a positive Hermitian form and, therefore, the Cauchy-(Schwartz-Bunyakovsky)
inequality holds for it: [{a,b)|> < (a,a)(b,b), that is, |¢(a*b)|* < w(a*a)p(b*D).

Lemma 2.10. Positive linear functionals are continuous. If uy is an approrimate unit
for A, then ||@|| = limyea @(uy). In particular, if A is unital, then ||¢| = ¢(1).

Proof. Let us first consider the unital case. If 0 < a < 1, then since ¢ is positive,
we obtain that 0 < p(a) < ¢(1). For z € A with ||z|| < 1 we have 0 < z*z < 1,
so [p(x)]2 = |o(1-2))? < o(1) - p(z*r) < ¢(1)* by the Cauchy-Schwartz-Bunyakovsky
inequality. Thus, |¢| < ¢(1) < |l¢]|-

Now consider the non-unital case. Suppose that ¢ is not bounded on the unit ball A.
Then it is not bounded on the subset of the unit ball consisting of positive elements (since
any element a is decomposable into a linear combination of four positive elements with
norms not exceeding ||a||, see (1.7)). Thus, for every k € N there is a positive element
ar € A such that |[a|| < 1 and ¢(ay) > 2. Let us put a := > ;- % € A. Then for any
n € N, we have a > ) | 5% and

n

o) > ¢ (z 2—) _yEw o,

k=1

that is impossible. Thus, ¢ is bounded in the non-unital case as well.

Let m := limyep ¢(uy), and the limit exists since the directed net is increasing and
bounded by |¢|| from above. Then, for any = € A with ||z]| < 1 we have |p(z)| =
limyep [p(urx)| due to the continuity of ¢. Therefore, by the Cauchy-Schwartz-Bunya-
kovsky inequality we have

lp@)l = lim lp(wa)|* < sup p(uX)e(a"z) < supplu)p(a'z) < mlle].
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For any € > 0 we choose an element x € A such that ||¢|* < |¢(z)]* + . Then |p|* <
ml|p|| +¢&. Hence, ||¢]|> < m|¢|| and ||| < m. Since for any & > 0 there is uy, for which
©(uy,) > m — e, we come to the equality ||¢|| = m. O

Corollary 2.11. If ¢ is a state on a unital C*-algebra, then p(1) = 1.

Proof. By the previous lemma, 1 = [|¢]| = ¢(1). O



