
Chapter 2

Representations of C∗-algebras

Lecture 7

2.1 Definition and basic properties

Definition 2.1. A representation of a C∗-algebraA on a Hilbert spaceH is a ∗-homomorphism
from A to B(H).

Definition 2.2. A representation of a C∗-algebra A is called algebraically irreducible, if
there is no proper invariant linear subspace in H (when operated by operators from the
image of the representation). A representation is topologically irreducible, if there is no
proper closed invariant subspaces.

We will see soon that for C∗-algebras these two concepts coincide.

Lemma 2.3. A representation π is topologically irreducible if and only if π(A)′ = C1.

Proof. If π(A)′ contains something other than scalars, then it also contains a self-adjoint
non-scalar operator (this immediately follows from the expansion of a non-scalar operator
into a linear combination of two self-adjoint ones a = a+a∗

2
+ i · a−a∗

2i
). Using Borel

functional calculus (see note 1.64) for this self-adjoint operator b, we can obtain a proper
projection p in π(A)′. Namely, if an operator is nonscalar, then it has at least two distinct
points in the spectrum, say, t0 and t1, and we need to consider a Borel function f , taking
values 0 and 1, and f(t0) = 0, f(t1) = 1 ( task 43). (You can also not use calculus,
but simply take suitable spectral projections from the standard spectral theorem, that by
construction have the necessary commutation properties). Then pH is a closed invariant
subspace, since p ∈ π(A)′.

Conversely, let L ⊂ H be a closed π(A)-invariant subspace, and p ∈ B(H) is a pro-
jection onto this subspace. Then π(a)p = pπ(a)p for any a ∈ A. Therefore pπ(a) =
(π(a∗)p)∗ = (pπ(a∗)p)∗ = pπ(a)p = π(a)p and p ∈ π(A)′. Moreover, p is not a scalar.

Problem 43. Verify in the proof above that f(b) is a proper projection, since f 2 = f
and Sp(f(b)) = {0, 1}.
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Problem 44. Prove a more general fact: if a self-adjoint element a in a unital C∗-algebra
has Sp(a) = {0, 1}, then a is a nonscalar idempotent.

Lemma 2.4. Let π be a topologically irreducible representation of a C∗-algebra A in a
Hilbert space H. Then for any t ∈ B(H), a finite-dimensional subspace L ⊂ H and ε > 0,
there is an element a ∈ A such that ‖a‖ ≤ ‖t|L‖ and ‖(π(a)− t)|L‖ < ε.

Proof. Since π is topologically irreducible, then by Lemma 2.3 π(A)′ coincides with scalars,
hence π(A)′′ = B(H). That is why π(A) is dense in B(H) in the weak (strong) topology.
Without loss of generality, we can assume that ‖t|L‖ = 1. Let us put s = tpL, where
pL is the projection onto L. Since L is finite-dimensional, then, by Kaplansky’s density
theorem, there is b ∈ A such that ‖π(b)‖ 6 1 and ‖(π(b)− s)|L‖ < ε/2. Then there is an
element c ∈ A such that π(c) = π(b) and ‖c‖ < ‖π(b)‖(1 + ε/2) (see Theorem 1.50). Let
us put a := c

1+ε/2
. Then ‖a‖ 6 1 and

‖(π(a)− t)|L‖ 6 ‖(π(c)− t)|L‖+ ‖π(a)− π(c)‖ < ε/2 + ε/2 = ε.

Lemma 2.5. Let π be a topologically irreducible representation of the C∗-algebra A in the
Hilbert space H. Then for any t ∈ B(H), finite-dimensional subspace L ⊂ H and ε > 0,
there is an element a ∈ A such that π(a)|L = t|L and ‖a‖ 6 ‖t‖+ ε.

Proof. By the previous lemma, there is an element a0 ∈ A such that ‖a0‖ 6 ‖t‖ and
‖(π(a0)− t)|L‖ < ε/2. By induction we can find for each n, an element an ∈ A such that
‖an‖ 6 2−nε and ‖(

∑n
k=0 π(an) − t)pL|‖ < 2−n−1ε. Indeed, suppose that the elements

are found for some n and all the smaller ones. Applying the previous lemma to s =
−
∑n

k=0 π(ak) + t, the same subspace L and 2−n−2ε, we find an element an+1 such that
‖an+1‖ 6 2−n−1ε and ‖(

∑n+1
k=1 π(ak)− t)pL‖ < 2−n−2ε. Now let’s put a =

∑∞
k=0 ak. Then

a ∈ A and it is evident that ‖a‖ 6 ‖t‖+ ε and a|L = t|L.

Theorem 2.6. Every topologically irreducible representation of a C∗-algebra is alge-
braically irreducible.

Proof. Let’s assume the opposite Let V ⊂ H be a non-closed invariant space, and V is
its closure. It is also an invariant subspace (since the action is continuous), so V = H.
Let us take η ∈ H \ V , of norm 1 for example. Let ξ ∈ V is a nonzero vector, and t is an
operator on H such that tξ = η. Then, by the previous lemma, there is an a ∈ A such
that π(a)ξ = η. Contradiction with the invariance of V .

2.2 Positive linear functionals

Definition 2.7. Linear functional (we do not require continuity, see Lemma 2.10 below)
ϕ on the C∗-algebra A is called positive, if ϕ(a) > 0 for any a > 0. If a positive linear
functional is continuous and has norm 1, then it is called a state.
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Example 2.8. If π is a representation of A in the Hilbert space H and ξ ∈ H, then the
functional ϕ(a) := (ξ, π(a)ξ) is positive. If A is unital and ‖ξ‖ = 1, then such ϕ is a state.

With every positive linear functional ϕ we can associate a sesquilinear form on A given
by the formula 〈a, b〉 := ϕ(a∗b), that is, the form 〈·, ·〉 is linear in the second argument
is conjugate linear in the first argument. By definition of positivity of the functional
〈a, a〉 = ϕ(a∗a) > 0 for any a ∈ A. Therefore, by the following lemma it is Hermitian
symmetric: 〈b, a〉 = 〈a, b〉.

Lemma 2.9 (from linear algebra course). If a sesquilinear form has 〈a, a〉 ∈ R for any
a, then it is Hermitian symmetric.

Proof. Let us write down the polarization identities

〈a+ b, a+ b〉 = 〈a, a〉+ 〈a, b〉+ 〈b, a〉+ 〈b, b〉, (2.1)

〈a+ ib, a+ ib〉 = 〈a, a〉+ 〈a, ib〉+ 〈ib, a〉+ 〈ib, ib〉 = 〈a, a〉+ i(〈a, b〉− 〈b, a〉) + 〈b, b〉. (2.2)

From the first we obtain that 〈a, b〉+〈b, a〉 is real, and from the second — that 〈a, b〉−〈b, a〉
is imaginary. So 〈a, b〉 = 〈b, a〉.

Thus, 〈a, b〉 is a positive Hermitian form and, therefore, the Cauchy-(Schwartz-Bunyakovsky)
inequality holds for it: |〈a, b〉|2 ≤ 〈a, a〉〈b, b〉, that is, |ϕ(a∗b)|2 6 ϕ(a∗a)ϕ(b∗b).

Lemma 2.10. Positive linear functionals are continuous. If uλ is an approximate unit
for A, then ‖ϕ‖ = limλ∈Λ ϕ(uλ). In particular, if A is unital, then ‖ϕ‖ = ϕ(1).

Proof. Let us first consider the unital case. If 0 6 a 6 1, then since ϕ is positive,
we obtain that 0 6 ϕ(a) 6 ϕ(1). For x ∈ A with ‖x‖ 6 1 we have 0 6 x∗x 6 1,
so |ϕ(x)|2 = |ϕ(1 · x)|2 6 ϕ(1) · ϕ(x∗x) 6 ϕ(1)2 by the Cauchy-Schwartz-Bunyakovsky
inequality. Thus, ‖ϕ‖ 6 ϕ(1) 6 ‖ϕ‖.

Now consider the non-unital case. Suppose that ϕ is not bounded on the unit ball A.
Then it is not bounded on the subset of the unit ball consisting of positive elements (since
any element a is decomposable into a linear combination of four positive elements with
norms not exceeding ‖a‖, see (1.7)). Thus, for every k ∈ N there is a positive element
ak ∈ A such that ‖ak‖ ≤ 1 and ϕ(ak) > 2k. Let us put a :=

∑∞
k=1

ak
2k
∈ A. Then for any

n ∈ N, we have a >
∑n

k=1
ak
2k

and

ϕ(a) > ϕ

(
n∑
k=1

ak
2k

)
=

n∑
k=1

ϕ(ak)

2k
> n,

that is impossible. Thus, ϕ is bounded in the non-unital case as well.
Let m := limλ∈Λ ϕ(uλ), and the limit exists since the directed net is increasing and

bounded by ‖ϕ‖ from above. Then, for any x ∈ A with ‖x‖ 6 1 we have |ϕ(x)| =
limλ∈Λ |ϕ(uλx)| due to the continuity of ϕ. Therefore, by the Cauchy-Schwartz-Bunya-
kovsky inequality we have

|ϕ(x)|2 = lim
λ∈Λ
|ϕ(uλx)|2 6 sup

λ
ϕ(u2

λ)ϕ(x∗x) 6 sup
λ
ϕ(uλ)ϕ(x∗x) 6 m‖ϕ‖.
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For any ε > 0 we choose an element x ∈ A such that ‖ϕ‖2 < |ϕ(x)|2 + ε. Then ‖ϕ‖2 <
m‖ϕ‖+ ε. Hence, ‖ϕ‖2 6 m‖ϕ‖ and ‖ϕ‖ 6 m. Since for any ε > 0 there is uλ0 for which
ϕ(uλ0) > m− ε, we come to the equality ‖ϕ‖ = m.

Corollary 2.11. If ϕ is a state on a unital C∗-algebra, then ϕ(1) = 1.

Proof. By the previous lemma, 1 = ‖ϕ‖ = ϕ(1).


