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Lemma 2.16. Let a € A be a self-adjoint element. Then there is a state ¢ on A such
that [¢(a)| = |lall

Proof. If A is non-unital, then we will work in A™. Consider the commutative C*-algebra

C*(a). Then there is a multiplicative linear functional ¢y on C*(a) such that |pg(a)| = ||a||
(we must take as ¢ the mapping, which is the taking of the value of functions at that
point of Sp(a), where the function a reaches its maximum). Then (1) = 1 = ||po]l-
Consider the extension of ¢q by the Hahn-Banach theorem to a functional ¢ on A*.
Then, since ||| =1 = (1), then ¢ is a state by Lemma 2.15. O
Corollary 2.17. For any a € A there exists a representation w and a unit vector & in the
space of representation such that ||m(a)é|| = ||al|.

Proof. By the previous lemma, we find a state ¢ such that p(a*a) = ||a|*>. Let 7 = 7, and
£ = &, were obtained for ¢ using the GNS construction. Then ||7(a){||* = (&, m(a*a)§) =
p(aa) = [la]*. O

Theorem 2.18 (Gelfand-Naimark). Any C*-algebra is isometrically *-isomorphic to a
C*-subalgebra of B(H) for some Hilbert space H. If A is separable, then H can be chosen
to be separable.

Proof. Let us set m = ®,7,, where the direct sum is taken over all states on A. More
precisely, we consider the Hilbert direct sum H := &,H,, (completion with respect to the
{5 norm of the space of compactly supported mappings ¢ + h, € H,, that is, the sets
h = {hy,}, h, € H,, and only a finite number A, is nonzero, and the norm is defined
as [[h][* = 3, [hel?) with diagonal action m(a)({h,}) = {my(a)(hy)}. Then, as can
be seen from the proof of the previous consequences, |7(a)|| = sup, |7 (a)|| = [la]. If
A is separable, then it is sufficient to take the sum over a countable set {y,}, where
|7, (@) || = |lan||, for elements a, forming a dense subset in A. Then 7 = ®,en7,, , and
the corresponding Hilbert space is separable, since each H,, is separable (as a completion
of a factor-space of a separable space). n

Definition 2.19. The representation constructed in the theorem (in its first part) is
called the universal representation of A. The von Neumann algebra 7(A)”, where 7 is the
universal representation, contains m(A) = A as a dense subset and is called the enveloping
von Neumann algebra for A.

2.5 Jordan decomposition

Lemma 2.20. Let ¢ be a linear functional on A. Then ¢ = 1 + i)y, where 11 and 1o
are self-adjoint.

Proof. Let us take, in the same way as we did for elements of algebra, 1;(a) = (p(a) +
p(a*))/2 and Yo(a) = (p(a) — ¢(a*))/2i. O
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Let A,, denote the set of all self-adjoint elements of A. Then it is evident that A, is
a real Banach space.

Problem 46. There is a natural bijection between self-adjoint linear functionals on A
and (real) linear functionals on As,.

To prove the Jordan decomposition theorem, we need the following statement, which
is of independent interest.

Theorem 2.21 (on extension of positive functionals). Let B C A be a C*-subalgebra, and
¢ : B — C be a positive functional. Then there exists a positive functional ¢’ : A — C
such that that ¢'|p = ¢ and ||¢'|] = ||¢||-

Proof. The following cases are possible:

a) both algebras have a common unit,

b) A has one, but B does not,

)
)

c¢) both algebras do not have a unit,
)

d) B has one, but A does not.

e) both algebras with 1, but 14 # 1p.

By Corollary 2.14, (c¢) and (b) can be reduced by adjoining 1 to (a
noted that BT = B@® C1,). In turn, (d) obviously reduces to (e).

In case (a) we extend ¢ (using the Hahn-Banach theorem) to
the same norm. Then by Lemma 2.10, ||¢'|| = ||¢]] = ¢(1) = ¢'(1
Lemma 2.15.

In case (e), consider the C*-subalgebra B := BGC 1, = BOC (14—1p) and extend ¢
to ¢y : By — C, setting p1(14—15) = 0. Then ¢;(a) = ¢(15-a), where a € B;. Indeed, if
a € B, then pi(a) = ¢(1g-a) = p(a), and if a = 14 — 15, then py(a) = p(1p(1l4—1p)) =

) (for (b) it should be

0 some <p : A — Cof
) and ¢’ is positive by

©(0) = 0. In this case, the unit of By is 14. Moreover, |lp1] < |l¢l - [|[18] = ¢, and
¢1(1a) = ¢(15) = [l¢l|. This means that [[¢1]| = [[¢f| = ¢1(1a) = ¢1(1p,) and, by
Lemma 2.15, ¢ is positive. Thus, case (e) is also reduced to the proven case (a). O

The Jordan theorem about decomposition of a measure in the sum of positive and
negative ones [8, Ch. VI, §5, Theorem 1] in the functional language (in the sense of the
Riesz-Markov-Kakutani theorem [5, Ch. I, §6, Theorem 4]) can be written as: for any
bounded real linear functional 7 : C(Q,R) — R there are positive linear functionals 7,
and 7_ such that 7 = 7. — 7 and ||7]| = ||7| + ||7—||, where €2 is a compact Haudorff
space and C(€2,R) is the real algebra of all real continuous functions on €.

Theorem 2.22 (Jordan decomposition). Let ¢ be a self-adjoint linear functional on
A. Then v = ¢y — @_, where @, and p_ are positive linear functionals on A and

191 = Tl Il + N1l
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Proof. Denote by K the set of all self-adjoint linear functionals of norm < 1, i.e., K C
(A*)sq. Then K is a x-weak closed subset of the unit ball and hence it is *-weak compact.
Define an R-linear map

0: Ay — CK,R),  0(a)(r) = 1(a),

so,if a € A, a > 0, then §(a) > 0 in K. By Lemma 2.16 the mapping 6 is an isometry
onto its image.

There is a natural isometry 7 — 7’ of real spaces (A*)s, and (As,)x (real functionals)
(see Problem46). By the Hahn-Banach theorem there is a functional p € (C(K,R))x
such that po 6§ = ¢ and ||p|| = ||| (an extension of a functional from the closed
subspace 6(As,)). Then by the Jordan theorem for measures (as it is explained above
before the formulation) there are positive functionals p; and p_ such that p = p, — p_
and [|p|| = [|p+|| + ||p—||. Consider ¢’ := py o6 and ¢’ := p_ o 6. These are functionals
from (Ag)i. Let ¢, and p_ correspond to them under the identification with (A*),.
Evidently they satisfy all the conditions, except maybe the norm property. Let us verify
it:

[ =19 = llpll = ol + o=l = Il L+ 11l = el + -1 = (11l

2.6 Linear topological spaces

Definition 2.23. A subset M of a linear space is called balanced, if for any v € M the
vector Av belongs to M for any |A| < 1. In particular, M is a star set relative to the zero
of space.

Definition 2.24. A subset M of a linear space is called absorbing, if for any vector v of
the space there is a number o > 0 such that v € M for |5] > «a.

Definition 2.25. A linear space equipped with a topology is called linear topological
space (LTS), if the operations of linear space are continuous.

In the basic course of functional analysis, the following simple statements are proved:
(see [8, Chapter III, §5]):

Proposition 2.26. 1). A base of LTS consists of shifts of neighborhoods of zero.
2). Any vector of LTS and a closed set not containing it have disjoint neighborhoods.

Definition 2.27. An LTS L satisfies the homothety condition, if for any neighborhood
of zero W its homothety AW is also a neighborhood of zero for any A # 0 from the main
field.

Remark 2.28. Obviously, the topology of a normed space satisfies the homothety con-
dition.

Proposition 2.29. For any neighborhood of zero U of an LTS L with the homothety
condition, there is a balanced neighborhood contained in it.
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Proof. Consider the continuous mapping C x L — L (multiplication) mapping (0,0.) —
Or. Then, by virtue of continuity, there are 6 > 0 and a neighborhood of zero W such
that AW C U for |\| < § (a non-strict inequality can be achieved by reducing 0 from the
standard definition). Let W’ := Upc|x<iAW. By virtue of 2.27, this W’ is what we are
looking for. O

Remark 2.30. In fact, it can be proven that the base of neighborhoods of zero of an LTS
L can be chosen from absorbing balanced sets, and also that the homothety condition is
in fact not a condition, but we will not need this (see [9, Chapter II, §4]).

We will need the following important result.

Theorem 2.31. Let L be a finite-dimensional space, dim L = n. Then any Hausdorff
topology T making L a linear topological space L. with the homothety condition coincides
with the topology of the Euclidean norm ||v||* = Y1, [v'|?, where eq,. .., e, is some base
of L, and v = vle; + ---v"e,.

Proof. The space L with Euclidean (or unitary) topology will be denoted by L,, and
neighborhoods of zero of two topologies (7 and Euclidean) will be denoted by 7" and U,
respectively.

Consider an arbitrary 7. Then there is a neighborhood Ty such that To+---+Ty C T
(n terms) due to the continuity of the addition operation. For every k there is g > 0 such
that v*ey € Ty for |v,| < ex (k=1,...,n). Let € := ming gy, and U := {v € L||[v| < &}
Then v*e, € Ty for any v € U and any k = 1,...,n. Thus, U C T. From what has been
proved, in particular, it follows that the identity mapping ¢ : L, — L, is continuous.

Conversely, let U be an arbitrary neighborhood, we can assume that U = B(0, ) is an
open ball of radius € with boundary (sphere) S, which is a compact set. Then S = ¢(5)
is compact in L,. This means that it is closed, since the topology is Hausdorff. Then
there is a stellar neighborhood of zero T' (for example, balanced) that does not intersect
S by virtue of propositions 2.26 and 2.29. Moreover, T' C U, since otherwise there exists
a vector v € T such that ||v]| > ¢, and if we put o := ¢/||v||, w := awv, then a < 1, so
w € T by the star property. But ||w|| =¢,sow € TNS = &. A contradiction. ]



