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Lecture 8

Lemma 2.16. Let a ∈ A be a self-adjoint element. Then there is a state ϕ on A such
that |ϕ(a)| = ‖a‖.

Proof. If A is non-unital, then we will work in A+. Consider the commutative C∗-algebra
C∗(a). Then there is a multiplicative linear functional ϕ0 on C∗(a) such that |ϕ0(a)| = ‖a‖
(we must take as ϕ0 the mapping, which is the taking of the value of functions at that
point of Sp(a), where the function â reaches its maximum). Then ϕ0(1) = 1 = ‖ϕ0‖.
Consider the extension of ϕ0 by the Hahn-Banach theorem to a functional ϕ on A+.
Then, since ‖ϕ‖ = 1 = ϕ(1), then ϕ is a state by Lemma 2.15.

Corollary 2.17. For any a ∈ A there exists a representation π and a unit vector ξ in the
space of representation such that ‖π(a)ξ‖ = ‖a‖.

Proof. By the previous lemma, we find a state ϕ such that ϕ(a∗a) = ‖a‖2. Let π = πϕ and
ξ = ξϕ were obtained for ϕ using the GNS construction. Then ‖π(a)ξ‖2 = (ξ, π(a∗a)ξ) =
ϕ(a∗a) = ‖a‖2.

Theorem 2.18 (Gelfand-Naimark). Any C∗-algebra is isometrically ∗-isomorphic to a
C∗-subalgebra of B(H) for some Hilbert space H. If A is separable, then H can be chosen
to be separable.

Proof. Let us set π = ⊕ϕπϕ, where the direct sum is taken over all states on A. More
precisely, we consider the Hilbert direct sum H := ⊕ϕHϕ (completion with respect to the
`2 norm of the space of compactly supported mappings ϕ 7→ hϕ ∈ Hϕ, that is, the sets
h = {hϕ}, hϕ ∈ Hϕ, and only a finite number hϕ is nonzero, and the norm is defined
as ‖h‖2 =

∑
ϕ ‖hϕ‖2) with diagonal action π(a)({hϕ}) = {πϕ(a)(hϕ)}. Then, as can

be seen from the proof of the previous consequences, ‖π(a)‖ = supϕ ‖πϕ(a)‖ = ‖a‖. If
A is separable, then it is sufficient to take the sum over a countable set {ϕn}, where
‖πϕn(an)‖ = ‖an‖, for elements an forming a dense subset in A. Then π = ⊕n∈Nπϕn , and
the corresponding Hilbert space is separable, since each Hϕn is separable (as a completion
of a factor-space of a separable space).

Definition 2.19. The representation constructed in the theorem (in its first part) is
called the universal representation of A. The von Neumann algebra π(A)′′, where π is the
universal representation, contains π(A) ∼= A as a dense subset and is called the enveloping
von Neumann algebra for A.

2.5 Jordan decomposition

Lemma 2.20. Let ϕ be a linear functional on A. Then ϕ = ψ1 + iψ2, where ψ1 and ψ2

are self-adjoint.

Proof. Let us take, in the same way as we did for elements of algebra, ψ1(a) = (ϕ(a) +
ϕ(a∗))/2 and ψ2(a) = (ϕ(a)− ϕ(a∗))/2i.
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Let Asa denote the set of all self-adjoint elements of A. Then it is evident that Asa is
a real Banach space.

Problem 46. There is a natural bijection between self-adjoint linear functionals on A
and (real) linear functionals on Asa.

To prove the Jordan decomposition theorem, we need the following statement, which
is of independent interest.

Theorem 2.21 (on extension of positive functionals). Let B ⊂ A be a C∗-subalgebra, and
ϕ : B → C be a positive functional. Then there exists a positive functional ϕ′ : A → C
such that that ϕ′|B = ϕ and ‖ϕ′‖ = ‖ϕ‖.

Proof. The following cases are possible:

a) both algebras have a common unit,

b) A has one, but B does not,

c) both algebras do not have a unit,

d) B has one, but A does not.

e) both algebras with 1, but 1A 6= 1B.

By Corollary 2.14, (c) and (b) can be reduced by adjoining 1 to (a) (for (b) it should be
noted that B+ ∼= B ⊕ C 1A). In turn, (d) obviously reduces to (e).

In case (a) we extend ϕ (using the Hahn-Banach theorem) to some ϕ′ : A → C of
the same norm. Then by Lemma 2.10, ‖ϕ′‖ = ‖ϕ‖ = ϕ(1) = ϕ′(1) and ϕ′ is positive by
Lemma 2.15.

In case (e), consider the C∗-subalgebra B1 := B⊕C 1A = B⊕C (1A−1B) and extend ϕ
to ϕ1 : B1 → C, setting ϕ1(1A−1B) = 0. Then ϕ1(a) = ϕ(1B ·a), where a ∈ B1. Indeed, if
a ∈ B, then ϕ1(a) = ϕ(1B ·a) = ϕ(a), and if a = 1A−1B, then ϕ1(a) = ϕ(1B(1A−1B)) =
ϕ(0) = 0. In this case, the unit of B1 is 1A. Moreover, ‖ϕ1‖ 6 ‖ϕ‖ · ‖1B‖ = ‖ϕ‖, and
ϕ1(1A) = ϕ(1B) = ‖ϕ‖. This means that ‖ϕ1‖ = ‖ϕ‖ = ϕ1(1A) = ϕ1(1B1) and, by
Lemma 2.15, ϕ1 is positive. Thus, case (e) is also reduced to the proven case (a).

The Jordan theorem about decomposition of a measure in the sum of positive and
negative ones [8, Ch. VI, §5, Theorem 1] in the functional language (in the sense of the
Riesz-Markov-Kakutani theorem [5, Ch. I, §6, Theorem 4]) can be written as: for any
bounded real linear functional τ : C(Ω,R) → R there are positive linear functionals τ+

and τ− such that τ = τ+ − τ− and ‖τ‖ = ‖τ+‖ + ‖τ−‖, where Ω is a compact Haudorff
space and C(Ω,R) is the real algebra of all real continuous functions on Ω.

Theorem 2.22 (Jordan decomposition). Let ψ be a self-adjoint linear functional on
A. Then ψ = ϕ+ − ϕ−, where ϕ+ and ϕ− are positive linear functionals on A and
‖ψ‖ = ‖ϕ+‖+ ‖ϕ−‖.
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Proof. Denote by K the set of all self-adjoint linear functionals of norm 6 1, i.e., K ⊂
(A∗)sa. Then K is a ∗-weak closed subset of the unit ball and hence it is ∗-weak compact.
Define an R-linear map

θ : Asa → C(K,R), θ(a)(τ) = τ(a),

so, if a ∈ A, a > 0, then θ(a) > 0 in K. By Lemma 2.16 the mapping θ is an isometry
onto its image.

There is a natural isometry τ 7→ τ ′ of real spaces (A∗)sa and (Asa)
∗
R (real functionals)

(see Problem46). By the Hahn-Banach theorem there is a functional ρ ∈ (C(K,R))∗R
such that ρ ◦ θ = ψ′ and ‖ρ‖ = ‖ψ′‖ (an extension of a functional from the closed
subspace θ(Asa)). Then by the Jordan theorem for measures (as it is explained above
before the formulation) there are positive functionals ρ+ and ρ− such that ρ = ρ+ − ρ−
and ‖ρ‖ = ‖ρ+‖ + ‖ρ−‖. Consider ϕ′+ := ρ+ ◦ θ and ϕ′− := ρ− ◦ θ. These are functionals
from (Asa)

∗
R. Let ϕ+ and ϕ− correspond to them under the identification with (A∗)sa.

Evidently they satisfy all the conditions, except maybe the norm property. Let us verify
it:

‖ψ‖ = ‖ψ′‖ = ‖ρ‖ = ‖ρ+‖+ ‖ρ−‖ > ‖ϕ′+‖+ ‖ϕ′−‖ = ‖ϕ+‖+ ‖ϕ−‖ > ‖ψ‖.

2.6 Linear topological spaces

Definition 2.23. A subset M of a linear space is called balanced, if for any v ∈ M the
vector λv belongs to M for any |λ| 6 1. In particular, M is a star set relative to the zero
of space.

Definition 2.24. A subset M of a linear space is called absorbing, if for any vector v of
the space there is a number α > 0 such that v ∈ βM for |β| > α.

Definition 2.25. A linear space equipped with a topology is called linear topological
space (LTS), if the operations of linear space are continuous.

In the basic course of functional analysis, the following simple statements are proved:
(see [8, Chapter III, §5]):

Proposition 2.26. 1). A base of LTS consists of shifts of neighborhoods of zero.
2). Any vector of LTS and a closed set not containing it have disjoint neighborhoods.

Definition 2.27. An LTS L satisfies the homothety condition, if for any neighborhood
of zero W its homothety λW is also a neighborhood of zero for any λ 6= 0 from the main
field.

Remark 2.28. Obviously, the topology of a normed space satisfies the homothety con-
dition.

Proposition 2.29. For any neighborhood of zero U of an LTS L with the homothety
condition, there is a balanced neighborhood contained in it.



38 CHAPTER 2. REPRESENTATIONS OF C∗-ALGEBRAS

Proof. Consider the continuous mapping C× L→ L (multiplication) mapping (0, 0L) 7→
0L. Then, by virtue of continuity, there are δ > 0 and a neighborhood of zero W such
that λW ⊆ U for |λ| 6 δ (a non-strict inequality can be achieved by reducing δ from the
standard definition). Let W ′ := ∪0<|λ|61λW . By virtue of 2.27, this W ′ is what we are
looking for.

Remark 2.30. In fact, it can be proven that the base of neighborhoods of zero of an LTS
L can be chosen from absorbing balanced sets, and also that the homothety condition is
in fact not a condition, but we will not need this (see [9, Chapter II, §4]).

We will need the following important result.

Theorem 2.31. Let L be a finite-dimensional space, dimL = n. Then any Hausdorff
topology τ making L a linear topological space Lτ with the homothety condition coincides
with the topology of the Euclidean norm ‖v‖2 =

∑n
i=1 |vi|2, where e1, . . . , en is some base

of L, and v = v1e1 + · · · vnen.

Proof. The space L with Euclidean (or unitary) topology will be denoted by Lu, and
neighborhoods of zero of two topologies (τ and Euclidean) will be denoted by T and U ,
respectively.

Consider an arbitrary T . Then there is a neighborhood T0 such that T0 + · · ·+T0 ⊂ T
(n terms) due to the continuity of the addition operation. For every k there is εk > 0 such
that vkek ∈ T0 for |vk| < εk (k = 1, . . . , n). Let ε := mink εk, and U := {v ∈ L | ‖v‖ < ε}.
Then vkek ∈ T0 for any v ∈ U and any k = 1, . . . , n. Thus, U ⊂ T . From what has been
proved, in particular, it follows that the identity mapping ι : Lu → Lτ is continuous.

Conversely, let U be an arbitrary neighborhood, we can assume that U = B(0, ε) is an
open ball of radius ε with boundary (sphere) S, which is a compact set. Then S = ι(S)
is compact in Lτ . This means that it is closed, since the topology is Hausdorff. Then
there is a stellar neighborhood of zero T (for example, balanced) that does not intersect
S by virtue of propositions 2.26 and 2.29. Moreover, T ⊆ U , since otherwise there exists
a vector v ∈ T such that ‖v‖ > ε, and if we put α := ε/‖v‖, w := αv, then α 6 1, so
w ∈ T by the star property. But ‖w‖ = ε, so w ∈ T ∩ S = ∅. A contradiction.


