Lecture 8

Lemma 2.16. Let $a \in A$ be a self-adjoint element. Then there is a state φ on A such that $|\varphi(a)|=\|a\|$.

Proof. If A is non-unital, then we will work in A^{+}. Consider the commutative C^{*}-algebra $C^{*}(a)$. Then there is a multiplicative linear functional φ_{0} on $C^{*}(a)$ such that $\left|\varphi_{0}(a)\right|=\|a\|$ (we must take as φ_{0} the mapping, which is the taking of the value of functions at that point of $\operatorname{Sp}(a)$, where the function \hat{a} reaches its maximum). Then $\varphi_{0}(1)=1=\left\|\varphi_{0}\right\|$. Consider the extension of φ_{0} by the Hahn-Banach theorem to a functional φ on A^{+}. Then, since $\|\varphi\|=1=\varphi(1)$, then φ is a state by Lemma 2.15.

Corollary 2.17. For any $a \in A$ there exists a representation π and a unit vector ξ in the space of representation such that $\|\pi(a) \xi\|=\|a\|$.

Proof. By the previous lemma, we find a state φ such that $\varphi\left(a^{*} a\right)=\|a\|^{2}$. Let $\pi=\pi_{\varphi}$ and $\xi=\xi_{\varphi}$ were obtained for φ using the GNS construction. Then $\|\pi(a) \xi\|^{2}=\left(\xi, \pi\left(a^{*} a\right) \xi\right)=$ $\varphi\left(a^{*} a\right)=\|a\|^{2}$.

Theorem 2.18 (Gelfand-Naimark). Any C^{*}-algebra is isometrically *-isomorphic to a C^{*}-subalgebra of $\mathbb{B}(H)$ for some Hilbert space H. If A is separable, then H can be chosen to be separable.

Proof. Let us set $\pi=\oplus_{\varphi} \pi_{\varphi}$, where the direct sum is taken over all states on A. More precisely, we consider the Hilbert direct sum $H:=\oplus_{\varphi} H_{\varphi}$ (completion with respect to the ℓ_{2} norm of the space of compactly supported mappings $\varphi \mapsto h_{\varphi} \in H_{\varphi}$, that is, the sets $h=\left\{h_{\varphi}\right\}, h_{\varphi} \in H_{\varphi}$, and only a finite number h_{φ} is nonzero, and the norm is defined as $\left.\|h\|^{2}=\sum_{\varphi}\left\|h_{\varphi}\right\|^{2}\right)$ with diagonal action $\pi(a)\left(\left\{h_{\varphi}\right\}\right)=\left\{\pi_{\varphi}(a)\left(h_{\varphi}\right)\right\}$. Then, as can be seen from the proof of the previous consequences, $\|\pi(a)\|=\sup _{\varphi}\left\|\pi_{\varphi}(a)\right\|=\|a\|$. If A is separable, then it is sufficient to take the sum over a countable set $\left\{\varphi_{n}\right\}$, where $\left\|\pi_{\varphi_{n}}\left(a_{n}\right)\right\|=\left\|a_{n}\right\|$, for elements a_{n} forming a dense subset in A. Then $\pi=\oplus_{n \in \mathbb{N}} \pi_{\varphi_{n}}$, and the corresponding Hilbert space is separable, since each $H_{\varphi_{n}}$ is separable (as a completion of a factor-space of a separable space).

Definition 2.19. The representation constructed in the theorem (in its first part) is called the universal representation of A. The von Neumann algebra $\pi(A)^{\prime \prime}$, where π is the universal representation, contains $\pi(A) \cong A$ as a dense subset and is called the enveloping von Neumann algebra for A.

2.5 Jordan decomposition

Lemma 2.20. Let φ be a linear functional on A. Then $\varphi=\psi_{1}+i \psi_{2}$, where ψ_{1} and ψ_{2} are self-adjoint.

Proof. Let us take, in the same way as we did for elements of algebra, $\psi_{1}(a)=(\varphi(a)+$ $\left.\overline{\varphi\left(a^{*}\right)}\right) / 2$ and $\psi_{2}(a)=\left(\varphi(a)-\overline{\varphi\left(a^{*}\right)}\right) / 2 i$.

Let $A_{s a}$ denote the set of all self-adjoint elements of A. Then it is evident that $A_{s a}$ is a real Banach space.

Problem 46. There is a natural bijection between self-adjoint linear functionals on A and (real) linear functionals on $A_{s a}$.

To prove the Jordan decomposition theorem, we need the following statement, which is of independent interest.

Theorem 2.21 (on extension of positive functionals). Let $B \subset A$ be a C^{*}-subalgebra, and $\varphi: B \rightarrow \mathbb{C}$ be a positive functional. Then there exists a positive functional $\varphi^{\prime}: A \rightarrow \mathbb{C}$ such that that $\left.\varphi^{\prime}\right|_{B}=\varphi$ and $\left\|\varphi^{\prime}\right\|=\|\varphi\|$.

Proof. The following cases are possible:
a) both algebras have a common unit,
b) A has one, but B does not,
c) both algebras do not have a unit,
d) B has one, but A does not.
e) both algebras with 1 , but $1_{A} \neq 1_{B}$.

By Corollary 2.14, (c) and (b) can be reduced by adjoining 1 to (a) (for (b) it should be noted that $B^{+} \cong B \oplus \mathbb{C} 1_{A}$). In turn, (d) obviously reduces to (e).

In case (a) we extend φ (using the Hahn-Banach theorem) to some $\varphi^{\prime}: A \rightarrow \mathbb{C}$ of the same norm. Then by Lemma 2.10, $\left\|\varphi^{\prime}\right\|=\|\varphi\|=\varphi(1)=\varphi^{\prime}(1)$ and φ^{\prime} is positive by Lemma 2.15.

In case (e), consider the C^{*}-subalgebra $B_{1}:=B \oplus \mathbb{C} 1_{A}=B \oplus \mathbb{C}\left(1_{A}-1_{B}\right)$ and extend φ to $\varphi_{1}: B_{1} \rightarrow \mathbb{C}$, setting $\varphi_{1}\left(1_{A}-1_{B}\right)=0$. Then $\varphi_{1}(a)=\varphi\left(1_{B} \cdot a\right)$, where $a \in B_{1}$. Indeed, if $a \in B$, then $\varphi_{1}(a)=\varphi\left(1_{B} \cdot a\right)=\varphi(a)$, and if $a=1_{A}-1_{B}$, then $\varphi_{1}(a)=\varphi\left(1_{B}\left(1_{A}-1_{B}\right)\right)=$ $\varphi(0)=0$. In this case, the unit of B_{1} is 1_{A}. Moreover, $\left\|\varphi_{1}\right\| \leqslant\|\varphi\| \cdot\left\|1_{B}\right\|=\|\varphi\|$, and $\varphi_{1}\left(1_{A}\right)=\varphi\left(1_{B}\right)=\|\varphi\|$. This means that $\left\|\varphi_{1}\right\|=\|\varphi\|=\varphi_{1}\left(1_{A}\right)=\varphi_{1}\left(1_{B_{1}}\right)$ and, by Lemma 2.15, φ_{1} is positive. Thus, case (e) is also reduced to the proven case (a).

The Jordan theorem about decomposition of a measure in the sum of positive and negative ones [8, Ch. VI, §5, Theorem 1] in the functional language (in the sense of the Riesz-Markov-Kakutani theorem [5, Ch. I, $\S 6$, Theorem 4]) can be written as: for any bounded real linear functional $\tau: C(\Omega, \mathbb{R}) \rightarrow \mathbb{R}$ there are positive linear functionals τ_{+} and τ_{-}such that $\tau=\tau_{+}-\tau_{-}$and $\|\tau\|=\left\|\tau_{+}\right\|+\left\|\tau_{-}\right\|$, where Ω is a compact Haudorff space and $C(\Omega, \mathbb{R})$ is the real algebra of all real continuous functions on Ω.

Theorem 2.22 (Jordan decomposition). Let ψ be a self-adjoint linear functional on A. Then $\psi=\varphi_{+}-\varphi_{-}$, where φ_{+}and φ_{-}are positive linear functionals on A and $\|\psi\|=\left\|\varphi_{+}\right\|+\left\|\varphi_{-}\right\|$.

Proof. Denote by K the set of all self-adjoint linear functionals of norm $\leqslant 1$, i.e., $K \subset$ $\left(A^{*}\right)_{s a}$. Then K is a $*$-weak closed subset of the unit ball and hence it is $*$-weak compact. Define an \mathbb{R}-linear map

$$
\theta: A_{s a} \rightarrow C(K, \mathbb{R}), \quad \theta(a)(\tau)=\tau(a)
$$

so, if $a \in A, a \geqslant 0$, then $\theta(a) \geqslant 0$ in K. By Lemma 2.16 the mapping θ is an isometry onto its image.

There is a natural isometry $\tau \mapsto \tau^{\prime}$ of real spaces $\left(A^{*}\right)_{s a}$ and $\left(A_{s a}\right)_{\mathbb{R}}^{*}$ (real functionals) (see Problem46). By the Hahn-Banach theorem there is a functional $\rho \in(C(K, \mathbb{R}))_{\mathbb{R}}^{*}$ such that $\rho \circ \theta=\psi^{\prime}$ and $\|\rho\|=\left\|\psi^{\prime}\right\|$ (an extension of a functional from the closed subspace $\theta\left(A_{s a}\right)$). Then by the Jordan theorem for measures (as it is explained above before the formulation) there are positive functionals ρ_{+}and ρ_{-}such that $\rho=\rho_{+}-\rho_{-}$ and $\|\rho\|=\left\|\rho_{+}\right\|+\left\|\rho_{-}\right\|$. Consider $\varphi_{+}^{\prime}:=\rho_{+} \circ \theta$ and $\varphi_{-}^{\prime}:=\rho_{-} \circ \theta$. These are functionals from $\left(A_{s a}\right)_{\mathbb{R}}^{*}$. Let φ_{+}and φ_{-}correspond to them under the identification with $\left(A^{*}\right)_{s a}$. Evidently they satisfy all the conditions, except maybe the norm property. Let us verify it:

$$
\|\psi\|=\left\|\psi^{\prime}\right\|=\|\rho\|=\left\|\rho_{+}\right\|+\left\|\rho_{-}\right\| \geqslant\left\|\varphi_{+}^{\prime}\right\|+\left\|\varphi_{-}^{\prime}\right\|=\left\|\varphi_{+}\right\|+\left\|\varphi_{-}\right\| \geqslant\|\psi\| .
$$

2.6 Linear topological spaces

Definition 2.23. A subset M of a linear space is called balanced, if for any $v \in M$ the vector λv belongs to M for any $|\lambda| \leqslant 1$. In particular, M is a star set relative to the zero of space.

Definition 2.24. A subset M of a linear space is called absorbing, if for any vector v of the space there is a number $\alpha>0$ such that $v \in \beta M$ for $|\beta| \geqslant \alpha$.

Definition 2.25. A linear space equipped with a topology is called linear topological space (LTS), if the operations of linear space are continuous.

In the basic course of functional analysis, the following simple statements are proved: (see [8, Chapter III, §5]):

Proposition 2.26. 1). A base of LTS consists of shifts of neighborhoods of zero.
2). Any vector of LTS and a closed set not containing it have disjoint neighborhoods.

Definition 2.27. An LTS L satisfies the homothety condition, if for any neighborhood of zero W its homothety λW is also a neighborhood of zero for any $\lambda \neq 0$ from the main field.

Remark 2.28. Obviously, the topology of a normed space satisfies the homothety condition.

Proposition 2.29. For any neighborhood of zero U of an LTS L with the homothety condition, there is a balanced neighborhood contained in it.

Proof. Consider the continuous mapping $\mathbb{C} \times L \rightarrow L$ (multiplication) mapping $\left(0,0_{L}\right) \mapsto$ 0_{L}. Then, by virtue of continuity, there are $\delta>0$ and a neighborhood of zero W such that $\lambda W \subseteq U$ for $|\lambda| \leqslant \delta$ (a non-strict inequality can be achieved by reducing δ from the standard definition). Let $W^{\prime}:=\cup_{0<|\lambda| \leqslant 1} \lambda W$. By virtue of 2.27 , this W^{\prime} is what we are looking for.

Remark 2.30. In fact, it can be proven that the base of neighborhoods of zero of an LTS L can be chosen from absorbing balanced sets, and also that the homothety condition is in fact not a condition, but we will not need this (see [9, Chapter II, §4]).

We will need the following important result.
Theorem 2.31. Let L be a finite-dimensional space, $\operatorname{dim} L=n$. Then any Hausdorff topology τ making L a linear topological space L_{τ} with the homothety condition coincides with the topology of the Euclidean norm $\|v\|^{2}=\sum_{i=1}^{n}\left|v^{i}\right|^{2}$, where e_{1}, \ldots, e_{n} is some base of L, and $v=v^{1} e_{1}+\cdots v^{n} e_{n}$.

Proof. The space L with Euclidean (or unitary) topology will be denoted by L_{u}, and neighborhoods of zero of two topologies (τ and Euclidean) will be denoted by T and U, respectively.

Consider an arbitrary T. Then there is a neighborhood T_{0} such that $T_{0}+\cdots+T_{0} \subset T$ (n terms) due to the continuity of the addition operation. For every k there is $\varepsilon_{k}>0$ such that $v^{k} e_{k} \in T_{0}$ for $\left|v_{k}\right|<\varepsilon_{k}(k=1, \ldots, n)$. Let $\varepsilon:=\min _{k} \varepsilon_{k}$, and $U:=\{v \in L \mid\|v\|<\varepsilon\}$. Then $v^{k} e_{k} \in T_{0}$ for any $v \in U$ and any $k=1, \ldots, n$. Thus, $U \subset T$. From what has been proved, in particular, it follows that the identity mapping $\iota: L_{u} \rightarrow L_{\tau}$ is continuous.

Conversely, let U be an arbitrary neighborhood, we can assume that $U=B(0, \varepsilon)$ is an open ball of radius ε with boundary (sphere) S, which is a compact set. Then $S=\iota(S)$ is compact in L_{τ}. This means that it is closed, since the topology is Hausdorff. Then there is a stellar neighborhood of zero T (for example, balanced) that does not intersect S by virtue of propositions 2.26 and 2.29 . Moreover, $T \subseteq U$, since otherwise there exists a vector $v \in T$ such that $\|v\| \geqslant \varepsilon$, and if we put $\alpha:=\varepsilon /\|v\|, w:=\alpha v$, then $\alpha \leqslant 1$, so $w \in T$ by the star property. But $\|w\|=\varepsilon$, so $w \in T \cap S=\varnothing$. A contradiction.

