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2.3 GNS-construction (Gelfand-Naimark-Segal)

Definition 2.12. A vector { € H is called cyclic for m: A — B(H), if m(A)¢ is dense in
H.

Theorem 2.13. Let ¢ be a positive linear functional on the C*-algebra A. Then there
exists a representation m, of the algebra A on the Hilbert space H and a cyclic vector
&y € H such that ||§,]|? = ||l and (&, mp(a)é,) = p(a) for all a € A.

Proof. Let N :={a € A: ¢(a*a) =0}. Then N = {a € A: p(b*a) =0 for all b € A} by
the Cauchy-Schwartz-Bunyakovsky inequality. Therefore N is closed as an intersection of
kernels of continuous functionals a — ¢(b*a)). Besides, N is a left ideal, since p(b*an) =
©((a*b)*n) = 0 for any a,b € A forn € N, so an € N.

Let us define an Hermitian inner product on the Banach quotient space A/N by the
formula (a, b) = ¢(a*b), where @ denotes the coset class a4+ N. This product is well defined
because if ny,ns € N, then ¢((a + n1)*(b+ n2)) = ¢(a*d) + ¢((a + n1)*na) + @(b*ny) =
o(a*b). Also (a,a) > 0 holds for @ # 0. Let H be the Hilbert space obtained from A/N
by the completion w.r.t. the norm given by this inner product. Let us denote by
the representation of A on A/N (here we slightly expand the concept of representation
to a pre-Hilbert space) by the formula my(a)i = (az), where £ € A/N. If n € N
then (a(x +n)) = (ax), so my is well defined. It is involutive, because (my(a)Z,y) =
o((az)*y) = p(z*(a*y)) = (&, m0(a*)y) = (mo(a*)*t,y) and mo(a*)* = mo(a). In this case,
|mo]] < 1. Indeed,

12 = sup Imo(@)il? = sup p(a*a‘a) <
l#]]<1 ll#]I<1

[[7mo(a)

< sup [la"allp(a"z) < lall*.

l£]l<1

Therefore m extends by continuity to a representation 7, of the algebra A on H.

If the algebra A is unital, then we set &, := 1. Then (&, 7,(a)&,) = ¢(a) and &, is
cyclic since m,(A)E, = A/N is dense in H. Finally, ||¢| = ¢(1) = ||,

For a general algebra A, consider its approximate unit uy. Let us show that u, is a
Cauchy directed net. Let us choose an € > 0. Then there is an index o € A such that
©(uq) > |lp|| — € (since |||l = limyea p(uy) by Lemma 2.10). Now let us find an index
f € A such that § > « and ||uyu, — ua|| < € for any A > §. Then

Re(p(uata)) = ¢(ua) + Re(p(urta — ua)) > [lof — 2.
That is why

lar — ol = @((ur = ua)?) = o(u}) + @(u) — 2Re(p(urua)) <
< p(u3) + o(ug) — 2([lell — 2€) < de.
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This means that for A\, u > 3, we have

lin = tull < llix = ttall + 1t — ]| < 4*/2.
Thus, 1, is a Cauchy net. Let £, := limyecp @y € H. Then (&, m,(a)&,) = limyep p(urauy) =
¢(a). Since m,(A)E, = A/N, then &, is cyclic. From a = 7,(a), it follows that

lim 7, () = lim 7 (w0 ()€ = mp(a)6 =

for any @ € A/N, so the directed net m,(uy) strongly converges to 1. Therefore ||¢| =
limyen p(un) = limyen (§p, T (ur)&e) = [16]I° - —~

2.4 Realization of (*-algebras as operator algebras
on Hilbert space

Corollary 2.14. Any state ¢ on a non-unital C*-algebra A admits a unique extension to
a state on AT,

Proof. Let m, be the representation of A given by the GNS construction. Let us set
m,(1) = 1. Then 7, can be extended to a representation of A™ and ¢(a) := (&, 7(a)&,)
is a state. It is unique, since ¢(1) = 1 must hold (Corollary 2.11). O

Problem 45. Let uy, A\ € A, be some approximate unit in a unital algebra. Prove that
1= lim)\eA Uy-

Lemma 2.15. Let ¢ : A — C be a continuous linear functional such that ||¢] = 1 =
limyep p(uy) for some approximate unit uy. Then ¢ is a state.

Proof. Let us first reduce the proof to the unital case. Let ¢ be some extension (by the
Hahn-Banach theorem) functional ¢ to a continuous functional on A*. Let ¢(1) =: «a.
Because the ||¢|| = 1, then |a] < 1. From inequality |2uy — 1|| < 1 it follows that
|2 — | = limyep [@(2uy — 1)| < 1. Thus, @ = 1. This means that we can assume that A
is unital and (1) = 1 (if A was unital from the very beginning, then we use the problem
45).

Let us now show that ¢(a) € R if a = a* (and therefore contained in [—||a]|, [|a||]).
Let a — self-adjoint element of norm 1. Then |a £ inl|]? = |a® + n?1| = n? + 1,
so |p(a) £in| < vVn?2+1 for any n € N. This means that ¢(a) is contained in the
intersection of all disks with centers at +in and radii v/n2 + 1. This intersection is equal
to the real interval [—1,1].

If 0 <a <1, then ||2a — 1|| < 1. Applying the previous reasoning to the self-adjoint
element 2a — 1, we obtain that —1 < 2p(a) — 1 < 1, so ¢(a) > 0 and ¢ is positive. [

Lemma 2.16. Let a € A be a self-adjoint element. Then there is a state ¢ on A such
that |p(a)| = |la|.
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Proof. If A is non-unital, then we will work in A™. Consider the commutative C*-algebra

C*(a). Then there is a multiplicative linear functional ¢y on C*(a) such that |¢g(a)| = ||al|
(we must take as o the mapping, which is the taking of the value of functions at that
point of Sp(a), where the function G reaches its maximum). Then po(1) = 1 = ||@oll.
Consider the extension of ¢q by the Hahn-Banach theorem to a functional ¢ on A*.
Then, since ||| =1 = ¢(1), then ¢ is a state by Lemma 2.15. O
Corollary 2.17. For any a € A there exists a representation w and a unit vector & in the
space of representation such that ||m(a)é|| = ||al|.

Proof. By the previous lemma, we find a state ¢ such that p(a*a) = ||a|>. Let 7 = 7, and
£ = &, were obtained for ¢ using the GNS construction. Then ||7(a)¢|* = (&, m(a*a)f) =
p(a*a) = |la|*. O

Theorem 2.18 (Gelfand-Naimark). Any C*-algebra is isometrically x-isomorphic to a
C*-subalgebra of B(H) for some Hilbert space H. If A is separable, then H can be chosen
to be separable.

Proof. Let us set m = ®,7,, where the direct sum is taken over all states on A. More
precisely, we consider the Hilbert direct sum H := &,H,, (completion with respect to the
¢y norm of the space of compactly supported mappings ¢ — h, € H,, that is, the sets
h = {h,}, h, € H,, and only a finite number h, is nonzero, and the norm is defined
as [[h[* = 30, [hel?) with diagonal action m(a)({h,}) = {my(a)(hy)}. Then, as can
be seen from the proof of the previous consequences, |7(a)|| = sup,, |7 (a)|| = [la]. If
A is separable, then it is sufficient to take the sum over a countable set {y,}, where
|7, (an)|| = |lan||, for elements a, forming a dense subset in A. Then 7 = @,en7,,, and
the corresponding Hilbert space is separable, since each H,, is separable (as a completion
of a factor-space of a separable space). O]

Definition 2.19. The representation constructed in the theorem (in its first part) is
called the universal representation of A. The von Neumann algebra w(A)”, where 7 is the
universal representation, contains m(A) = A as a dense subset and is called the enveloping
von Neumann algebra for A.

2.5 Jordan decomposition

Lemma 2.20. Let ¢ be a linear functional on A. Then ¢ = 1 + i)y, where 1 and 1y
are self-adjoint.

Proof. Let us take, in the same way as we did for elements of algebra, 1;(a) = (p(a) +
p(a*))/2 and Yo(a) = (p(a) — ¢(a*))/2i. O

Let Ay, denote the set of all self-adjoint elements of A. Then it is evident that A, is
a real Banach space.

Problem 46. There is a natural bijection between self-adjoint linear functionals on A
and (real) linear functionals on A,.
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To prove the Jordan decomposition theorem, we need the following statement, which
is of independent interest.

Theorem 2.21 (on extension of positive functionals). Let B C A be a C*-subalgebra, and
¢ : B — C be a positive functional. Then there exists a positive functional ¢’ : A — C
such that that ©'|p = ¢ and ||¢'|| = ||¢]|-

Proof. The following cases are possible:

a) both algebras have a common unit,

b) A has one, but B does not,

d

)
)
c¢) both algebras do not have a unit,
) B has one, but A does not.

)

e) both algebras with 1, but 14 # 15.

By Corollary 2.14, (c) and (b) can be reduced by adjoining 1 to (a
noted that Bt =2 B@® C14). In turn, (d) obviously reduces to (e).

In case (a) we extend ¢ (using the Hahn-Banach theorem) to
the same norm. Then by Lemma 2.10, ||¢'|| = ||l¢]] = ¢(1) = ¢'(1
Lemma 2.15.

In case (e), consider the C*-subalgebra B; :== B&C 1y = B&C (14—15p) and extend ¢
to ¢y : By — C, setting p1(14—15) = 0. Then ¢;(a) = ¢(15-a), where a € B;. Indeed, if
a € B, then pi(a) = ¢(1g-a) = p(a), and if a = 14 — 15, then py(a) = p(1p(la—1p)) =

) (for (b) it should be

0 some <p : A — Cof
) and ¢’ is positive by

©(0) = 0. In this case, the unit of By is 14. Moreover, ||p1] < |l¢] - [|[15] = |l¢l/, and
¢1(1a) = ¢(15) = [l¢l|. This means that [[¢1]| = [[of| = ¢1(1a) = ¢1(1p,) and, by
Lemma 2.15, ¢ is positive. Thus, case (e) is also reduced to the proven case (a). O

The Jordan theorem about decomposition of a measure in the sum of positive and
negative ones [8, Ch. VI, §5, Theorem 1] in the functional language (in the sense of the
Riesz-Markov-Kakutani theorem [5, Ch. I, §6, Theorem 4]) can be written as: for any
bounded real linear functional 7 : C'(£2,R) — R there are positive linear functionals 7,
and 7_ such that 7 = 7. — 7 and ||7]| = ||7¢| + ||7—||, where 2 is a compact Haudorff
space and C(€2,R) is the real algebra of all real continuous functions on 2.

Theorem 2.22 (Jordan decomposition). Let ¢ be a self-adjoint linear functional on
A. Then v = ¢, — ¢_, where @, and p_ are positive linear functionals on A and

[0 = Tl Il + lle-1I-

Proof. Denote by K the set of all self-adjoint linear functionals of norm < 1, i.e., K C
(A*)sq. Then K is a x-weak closed subset of the unit ball and hence it is x-weak compact.
Define an R-linear map

0: Ase — C(K,R), 0(a)(7) = 7(a),
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so,if a € A, a > 0, then §(a) > 0 in K. By Lemma 2.16 the mapping 6 is an isometry
onto its image.

There is a natural isometry 7 +— 7’ of real spaces (A*)s, and (Asq)g (real functionals)
(see Problem46). By the Hahn-Banach theorem there is a functional p € (C(K,R))x
such that po @ = 9/ and ||p|| = ||¢'|| (an extension of a functional from the closed
subspace 6(As,)). Then by the Jordan theorem for measures (as it is explained above
before the formulation) there are positive functionals p, and p_ such that p = p, — p_
and ||pl| = |lp4|| + [|p—|]. Consider ¢/, := p; 06 and ¢’ := p_ o 6. These are functionals
from (Ag)g. Let ¢, and ¢_ correspond to them under the identification with (A*),.
Evidently they satisfy all the conditions, except maybe the norm property. Let us verify
it:

11l = 1111 = ol = ol + o=l = N+ 11l = sl + eIl = [l



