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Lecture 8

2.3 GNS-construction (Gelfand-Naimark-Segal)

Definition 2.12. A vector ξ ∈ H is called cyclic for π : A→ B(H), if π(A)ξ is dense in
H.

Theorem 2.13. Let ϕ be a positive linear functional on the C∗-algebra A. Then there
exists a representation πϕ of the algebra A on the Hilbert space H and a cyclic vector
ξϕ ∈ H such that ‖ξϕ‖2 = ‖ϕ‖ and (ξϕ, πϕ(a)ξϕ) = ϕ(a) for all a ∈ A.

Proof. Let N := {a ∈ A : ϕ(a∗a) = 0}. Then N = {a ∈ A : ϕ(b∗a) = 0 for all b ∈ A} by
the Cauchy-Schwartz-Bunyakovsky inequality. Therefore N is closed as an intersection of
kernels of continuous functionals a 7→ ϕ(b∗a)). Besides, N is a left ideal, since ϕ(b∗an) =
ϕ((a∗b)∗n) = 0 for any a, b ∈ A for n ∈ N , so an ∈ N .

Let us define an Hermitian inner product on the Banach quotient space A/N by the
formula (ȧ, ḃ) = ϕ(a∗b), where ȧ denotes the coset class a+N . This product is well defined
because if n1, n2 ∈ N , then ϕ((a + n1)∗(b + n2)) = ϕ(a∗b) + ϕ((a + n1)∗n2) + ϕ(b∗n1) =
ϕ(a∗b). Also (ȧ, ȧ) > 0 holds for ȧ 6= 0. Let H be the Hilbert space obtained from A/N
by the completion w.r.t. the norm given by this inner product. Let us denote by π0

the representation of A on A/N (here we slightly expand the concept of representation
to a pre-Hilbert space) by the formula π0(a)ẋ = (ax)·, where ẋ ∈ A/N . If n ∈ N
then (a(x + n))· = (ax)·, so π0 is well defined. It is involutive, because (π0(a)ẋ, ẏ) =
ϕ((ax)∗y) = ϕ(x∗(a∗y)) = (ẋ, π0(a∗)ẏ) = (π0(a∗)∗ẋ, ẏ) and π0(a∗)∗ = π0(a). In this case,
‖π0‖ 6 1. Indeed,

‖π0(a)‖2 = sup
‖ẋ‖61

‖π0(a)ẋ‖2 = sup
‖ẋ‖61

ϕ(x∗a∗ax) 6

6 sup
‖ẋ‖61

‖a∗a‖ϕ(x∗x) 6 ‖a‖2.

Therefore π0 extends by continuity to a representation πϕ of the algebra A on H.
If the algebra A is unital, then we set ξϕ := 1̇. Then (ξϕ, πϕ(a)ξϕ) = ϕ(a) and ξϕ is

cyclic since πϕ(A)ξϕ = A/N is dense in H. Finally, ‖ϕ‖ = ϕ(1) = ‖ξϕ‖2.
For a general algebra A, consider its approximate unit uλ. Let us show that u̇λ is a

Cauchy directed net. Let us choose an ε > 0. Then there is an index α ∈ Λ such that
ϕ(uα) > ‖ϕ‖ − ε (since ‖ϕ‖ = limλ∈Λ ϕ(uλ) by Lemma 2.10). Now let us find an index
β ∈ Λ such that β > α and ‖uλuα − uα‖ < ε for any λ > β. Then

Re(ϕ(uλuα)) = ϕ(uα) + Re(ϕ(uλuα − uα)) > ‖ϕ‖ − 2ε.

That is why

‖u̇λ − u̇α‖2 = ϕ((uλ − uα)2) = ϕ(u2
λ) + ϕ(u2

α)− 2Re(ϕ(uλuα)) 6

6 ϕ(u2
λ) + ϕ(u2

α)− 2(‖ϕ‖ − 2ε) 6 4ε.
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This means that for λ, µ > β, we have

‖u̇λ − u̇µ‖ 6 ‖u̇λ − u̇α‖+ ‖u̇α − u̇µ‖ 6 4ε1/2.

Thus, u̇λ is a Cauchy net. Let ξϕ := limλ∈Λ u̇λ ∈ H. Then (ξϕ, πϕ(a)ξϕ) = limλ∈Λ ϕ(uλauλ) =
ϕ(a). Since πϕ(A)ξϕ = A/N , then ξϕ is cyclic. From ȧ = πϕ(a)ξϕ it follows that

lim
λ∈Λ

πϕ(uλ)ȧ = lim
λ∈Λ

πϕ(uλ)πϕ(a)ξϕ = πϕ(a)ξϕ = ȧ

for any ȧ ∈ A/N , so the directed net πϕ(uλ) strongly converges to 1. Therefore ‖ϕ‖ =
limλ∈Λ ϕ(uλ) = limλ∈Λ(ξϕ, πϕ(uλ)ξϕ) = ‖ξϕ‖2 .

2.4 Realization of C∗-algebras as operator algebras

on Hilbert space

Corollary 2.14. Any state ϕ on a non-unital C∗-algebra A admits a unique extension to
a state on A+.

Proof. Let πϕ be the representation of A given by the GNS construction. Let us set
πϕ(1) = 1. Then πϕ can be extended to a representation of A+ and ϕ̃(a) := (ξϕ, π(a)ξϕ)
is a state. It is unique, since ϕ̃(1) = 1 must hold (Corollary 2.11).

Problem 45. Let uλ, λ ∈ Λ, be some approximate unit in a unital algebra. Prove that
1 = limλ∈Λ uλ.

Lemma 2.15. Let ϕ : A → C be a continuous linear functional such that ‖ϕ‖ = 1 =
limλ∈Λ ϕ(uλ) for some approximate unit uλ. Then ϕ is a state.

Proof. Let us first reduce the proof to the unital case. Let ϕ̃ be some extension (by the
Hahn-Banach theorem) functional ϕ to a continuous functional on A+. Let ϕ̃(1) =: α.
Because the ‖ϕ̃‖ = 1, then |α| 6 1. From inequality ‖2uλ − 1‖ 6 1 it follows that
|2− α| = limλ∈Λ |ϕ(2uλ − 1)| 6 1. Thus, α = 1. This means that we can assume that A
is unital and ϕ(1) = 1 (if A was unital from the very beginning, then we use the problem
45).

Let us now show that ϕ(a) ∈ R if a = a∗ (and therefore contained in [−‖a‖, ‖a‖]).
Let a — self-adjoint element of norm 1. Then ‖a ± in1‖2 = ‖a2 + n21‖ = n2 + 1,
so |ϕ(a) ± in| 6

√
n2 + 1 for any n ∈ N. This means that ϕ(a) is contained in the

intersection of all disks with centers at ±in and radii
√
n2 + 1. This intersection is equal

to the real interval [−1, 1].
If 0 ≤ a ≤ 1, then ‖2a − 1‖ ≤ 1. Applying the previous reasoning to the self-adjoint

element 2a− 1, we obtain that −1 6 2ϕ(a)− 1 6 1, so ϕ(a) > 0 and ϕ is positive.

Lemma 2.16. Let a ∈ A be a self-adjoint element. Then there is a state ϕ on A such
that |ϕ(a)| = ‖a‖.
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Proof. If A is non-unital, then we will work in A+. Consider the commutative C∗-algebra
C∗(a). Then there is a multiplicative linear functional ϕ0 on C∗(a) such that |ϕ0(a)| = ‖a‖
(we must take as ϕ0 the mapping, which is the taking of the value of functions at that
point of Sp(a), where the function â reaches its maximum). Then ϕ0(1) = 1 = ‖ϕ0‖.
Consider the extension of ϕ0 by the Hahn-Banach theorem to a functional ϕ on A+.
Then, since ‖ϕ‖ = 1 = ϕ(1), then ϕ is a state by Lemma 2.15.

Corollary 2.17. For any a ∈ A there exists a representation π and a unit vector ξ in the
space of representation such that ‖π(a)ξ‖ = ‖a‖.

Proof. By the previous lemma, we find a state ϕ such that ϕ(a∗a) = ‖a‖2. Let π = πϕ and
ξ = ξϕ were obtained for ϕ using the GNS construction. Then ‖π(a)ξ‖2 = (ξ, π(a∗a)ξ) =
ϕ(a∗a) = ‖a‖2.

Theorem 2.18 (Gelfand-Naimark). Any C∗-algebra is isometrically ∗-isomorphic to a
C∗-subalgebra of B(H) for some Hilbert space H. If A is separable, then H can be chosen
to be separable.

Proof. Let us set π = ⊕ϕπϕ, where the direct sum is taken over all states on A. More
precisely, we consider the Hilbert direct sum H := ⊕ϕHϕ (completion with respect to the
`2 norm of the space of compactly supported mappings ϕ 7→ hϕ ∈ Hϕ, that is, the sets
h = {hϕ}, hϕ ∈ Hϕ, and only a finite number hϕ is nonzero, and the norm is defined
as ‖h‖2 =

∑
ϕ ‖hϕ‖2) with diagonal action π(a)({hϕ}) = {πϕ(a)(hϕ)}. Then, as can

be seen from the proof of the previous consequences, ‖π(a)‖ = supϕ ‖πϕ(a)‖ = ‖a‖. If
A is separable, then it is sufficient to take the sum over a countable set {ϕn}, where
‖πϕn(an)‖ = ‖an‖, for elements an forming a dense subset in A. Then π = ⊕n∈Nπϕn , and
the corresponding Hilbert space is separable, since each Hϕn is separable (as a completion
of a factor-space of a separable space).

Definition 2.19. The representation constructed in the theorem (in its first part) is
called the universal representation of A. The von Neumann algebra π(A)′′, where π is the
universal representation, contains π(A) ∼= A as a dense subset and is called the enveloping
von Neumann algebra for A.

2.5 Jordan decomposition

Lemma 2.20. Let ϕ be a linear functional on A. Then ϕ = ψ1 + iψ2, where ψ1 and ψ2

are self-adjoint.

Proof. Let us take, in the same way as we did for elements of algebra, ψ1(a) = (ϕ(a) +
ϕ(a∗))/2 and ψ2(a) = (ϕ(a)− ϕ(a∗))/2i.

Let Asa denote the set of all self-adjoint elements of A. Then it is evident that Asa is
a real Banach space.

Problem 46. There is a natural bijection between self-adjoint linear functionals on A
and (real) linear functionals on Asa.
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To prove the Jordan decomposition theorem, we need the following statement, which
is of independent interest.

Theorem 2.21 (on extension of positive functionals). Let B ⊂ A be a C∗-subalgebra, and
ϕ : B → C be a positive functional. Then there exists a positive functional ϕ′ : A → C
such that that ϕ′|B = ϕ and ‖ϕ′‖ = ‖ϕ‖.

Proof. The following cases are possible:

a) both algebras have a common unit,

b) A has one, but B does not,

c) both algebras do not have a unit,

d) B has one, but A does not.

e) both algebras with 1, but 1A 6= 1B.

By Corollary 2.14, (c) and (b) can be reduced by adjoining 1 to (a) (for (b) it should be
noted that B+ ∼= B ⊕ C 1A). In turn, (d) obviously reduces to (e).

In case (a) we extend ϕ (using the Hahn-Banach theorem) to some ϕ′ : A → C of
the same norm. Then by Lemma 2.10, ‖ϕ′‖ = ‖ϕ‖ = ϕ(1) = ϕ′(1) and ϕ′ is positive by
Lemma 2.15.

In case (e), consider the C∗-subalgebra B1 := B⊕C 1A = B⊕C (1A−1B) and extend ϕ
to ϕ1 : B1 → C, setting ϕ1(1A−1B) = 0. Then ϕ1(a) = ϕ(1B ·a), where a ∈ B1. Indeed, if
a ∈ B, then ϕ1(a) = ϕ(1B ·a) = ϕ(a), and if a = 1A−1B, then ϕ1(a) = ϕ(1B(1A−1B)) =
ϕ(0) = 0. In this case, the unit of B1 is 1A. Moreover, ‖ϕ1‖ 6 ‖ϕ‖ · ‖1B‖ = ‖ϕ‖, and
ϕ1(1A) = ϕ(1B) = ‖ϕ‖. This means that ‖ϕ1‖ = ‖ϕ‖ = ϕ1(1A) = ϕ1(1B1) and, by
Lemma 2.15, ϕ1 is positive. Thus, case (e) is also reduced to the proven case (a).

The Jordan theorem about decomposition of a measure in the sum of positive and
negative ones [8, Ch. VI, §5, Theorem 1] in the functional language (in the sense of the
Riesz-Markov-Kakutani theorem [5, Ch. I, §6, Theorem 4]) can be written as: for any
bounded real linear functional τ : C(Ω,R) → R there are positive linear functionals τ+

and τ− such that τ = τ+ − τ− and ‖τ‖ = ‖τ+‖ + ‖τ−‖, where Ω is a compact Haudorff
space and C(Ω,R) is the real algebra of all real continuous functions on Ω.

Theorem 2.22 (Jordan decomposition). Let ψ be a self-adjoint linear functional on
A. Then ψ = ϕ+ − ϕ−, where ϕ+ and ϕ− are positive linear functionals on A and
‖ψ‖ = ‖ϕ+‖+ ‖ϕ−‖.

Proof. Denote by K the set of all self-adjoint linear functionals of norm 6 1, i.e., K ⊂
(A∗)sa. Then K is a ∗-weak closed subset of the unit ball and hence it is ∗-weak compact.
Define an R-linear map

θ : Asa → C(K,R), θ(a)(τ) = τ(a),
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so, if a ∈ A, a > 0, then θ(a) > 0 in K. By Lemma 2.16 the mapping θ is an isometry
onto its image.

There is a natural isometry τ 7→ τ ′ of real spaces (A∗)sa and (Asa)
∗
R (real functionals)

(see Problem46). By the Hahn-Banach theorem there is a functional ρ ∈ (C(K,R))∗R
such that ρ ◦ θ = ψ′ and ‖ρ‖ = ‖ψ′‖ (an extension of a functional from the closed
subspace θ(Asa)). Then by the Jordan theorem for measures (as it is explained above
before the formulation) there are positive functionals ρ+ and ρ− such that ρ = ρ+ − ρ−
and ‖ρ‖ = ‖ρ+‖ + ‖ρ−‖. Consider ϕ′+ := ρ+ ◦ θ and ϕ′− := ρ− ◦ θ. These are functionals
from (Asa)

∗
R. Let ϕ+ and ϕ− correspond to them under the identification with (A∗)sa.

Evidently they satisfy all the conditions, except maybe the norm property. Let us verify
it:

‖ψ‖ = ‖ψ′‖ = ‖ρ‖ = ‖ρ+‖+ ‖ρ−‖ > ‖ϕ′+‖+ ‖ϕ′−‖ = ‖ϕ+‖+ ‖ϕ−‖ > ‖ψ‖.


