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Lecture 8

Lemma 2.16. Let a ∈ A be a self-adjoint element. Then there is a state ϕ on A such
that |ϕ(a)| = ‖a‖.

Proof. If A is non-unital, then we will work in A+. Consider the commutative C∗-algebra
C∗(a). Then there is a multiplicative linear functional ϕ0 on C∗(a) such that |ϕ0(a)| = ‖a‖
(we must take as ϕ0 the mapping, which is the taking of the value of functions at that
point of Sp(a), where the function â reaches its maximum). Then ϕ0(1) = 1 = ‖ϕ0‖.
Consider the extension of ϕ0 by the Hahn-Banach theorem to a functional ϕ on A+.
Then, since ‖ϕ‖ = 1 = ϕ(1), then ϕ is a state by Lemma 2.15.

Corollary 2.17. For any a ∈ A there exists a representation π and a unit vector ξ in the
space of representation such that ‖π(a)ξ‖ = ‖a‖.

Proof. By the previous lemma, we find a state ϕ such that ϕ(a∗a) = ‖a‖2. Let π = πϕ and
ξ = ξϕ were obtained for ϕ using the GNS construction. Then ‖π(a)ξ‖2 = (ξ, π(a∗a)ξ) =
ϕ(a∗a) = ‖a‖2.

Theorem 2.18 (Gelfand-Naimark). Any C∗-algebra is isometrically ∗-isomorphic to a
C∗-subalgebra of B(H) for some Hilbert space H. If A is separable, then H can be chosen
to be separable.

Proof. Let us set π = ⊕ϕπϕ, where the direct sum is taken over all states on A. More
precisely, we consider the Hilbert direct sum H := ⊕ϕHϕ (completion with respect to the
`2 norm of the space of compactly supported mappings ϕ 7→ hϕ ∈ Hϕ, that is, the sets
h = {hϕ}, hϕ ∈ Hϕ, and only a finite number hϕ is nonzero, and the norm is defined
as ‖h‖2 =

∑
ϕ ‖hϕ‖2) with diagonal action π(a)({hϕ}) = {πϕ(a)(hϕ)}. Then, as can

be seen from the proof of the previous consequences, ‖π(a)‖ = supϕ ‖πϕ(a)‖ = ‖a‖. If
A is separable, then it is sufficient to take the sum over a countable set {ϕn}, where
‖πϕn(an)‖ = ‖an‖, for elements an forming a dense subset in A. Then π = ⊕n∈Nπϕn , and
the corresponding Hilbert space is separable, since each Hϕn is separable (as a completion
of a factor-space of a separable space).

Definition 2.19. The representation constructed in the theorem (in its first part) is
called the universal representation of A. The von Neumann algebra π(A)′′, where π is the
universal representation, contains π(A) ∼= A as a dense subset and is called the enveloping
von Neumann algebra for A.

2.5 Jordan decomposition

Lemma 2.20. Let ϕ be a linear functional on A. Then ϕ = ψ1 + iψ2, where ψ1 and ψ2

are self-adjoint.

Proof. Let us take, in the same way as we did for elements of algebra, ψ1(a) = (ϕ(a) +
ϕ(a∗))/2 and ψ2(a) = (ϕ(a)− ϕ(a∗))/2i.
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Let Asa denote the set of all self-adjoint elements of A. Then it is evident that Asa is
a real Banach space.

Problem 46. There is a natural bijection between self-adjoint linear functionals on A
and (real) linear functionals on Asa.

To prove the Jordan decomposition theorem, we need the following statement, which
is of independent interest.

Theorem 2.21 (on extension of positive functionals). Let B ⊂ A be a C∗-subalgebra, and
ϕ : B → C be a positive functional. Then there exists a positive functional ϕ′ : A → C
such that that ϕ′|B = ϕ and ‖ϕ′‖ = ‖ϕ‖.

Proof. The following cases are possible:

a) both algebras have a common unit,

b) A has one, but B does not,

c) both algebras do not have a unit,

d) B has one, but A does not.

e) both algebras with 1, but 1A 6= 1B.

By Corollary 2.14, (c) and (b) can be reduced by adjoining 1 to (a) (for (b) it should be
noted that B+ ∼= B ⊕ C 1A). In turn, (d) obviously reduces to (e).

In case (a) we extend ϕ (using the Hahn-Banach theorem) to some ϕ′ : A → C of
the same norm. Then by Lemma 2.10, ‖ϕ′‖ = ‖ϕ‖ = ϕ(1) = ϕ′(1) and ϕ′ is positive by
Lemma 2.15.

In case (e), consider the C∗-subalgebra B1 := B⊕C 1A = B⊕C (1A−1B) and extend ϕ
to ϕ1 : B1 → C, setting ϕ1(1A−1B) = 0. Then ϕ1(a) = ϕ(1B ·a), where a ∈ B1. Indeed, if
a ∈ B, then ϕ1(a) = ϕ(1B ·a) = ϕ(a), and if a = 1A−1B, then ϕ1(a) = ϕ(1B(1A−1B)) =
ϕ(0) = 0. In this case, the unit of B1 is 1A. Moreover, ‖ϕ1‖ 6 ‖ϕ‖ · ‖1B‖ = ‖ϕ‖, and
ϕ1(1A) = ϕ(1B) = ‖ϕ‖. This means that ‖ϕ1‖ = ‖ϕ‖ = ϕ1(1A) = ϕ1(1B1) and, by
Lemma 2.15, ϕ1 is positive. Thus, case (e) is also reduced to the proven case (a).

The Jordan theorem about decomposition of a measure in the sum of positive and
negative ones [8, Ch. VI, §5, Theorem 1] in the functional language (in the sense of the
Riesz-Markov-Kakutani theorem [5, Ch. I, §6, Theorem 4]) can be written as: for any
bounded real linear functional τ : C(Ω,R) → R there are positive linear functionals τ+

and τ− such that τ = τ+ − τ− and ‖τ‖ = ‖τ+‖ + ‖τ−‖, where Ω is a compact Haudorff
space and C(Ω,R) is the real algebra of all real continuous functions on Ω.


