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Lecture 9

2.7 Finite-dimensional C∗-algebras

Consider the ∗-weak topology on A defined by the seminorm system a 7→ |ϕ(a)| for
all linear functionals ϕ. From Lemma 2.20 and Theorem 2.22 it follows that the same
topology can be obtained by using only seminorms, defined by states.

Note also that the corresponding LTS has the homothety property 2.27.

Lemma 2.32. A finite-dimensional C∗-algebra is always unital.

Proof. If A is finite-dimensional, then the topology of the norm coincides with the ∗-weak
topology according to Theorem 2.31. Let un be an approximate unit of the algebra A.
Then for any state ϕ the sequence ϕ(un) is non-decreasing and bounded. Therefore un
converges in ∗-weak topology, and therefore in norm. Thus, there is a limit limn un = a.
Then ax = xa = x for any x ∈ A, so a = 1.

Lemma 2.33. Let I ⊂ A be an ideal in a finite-dimensional C∗-algebra A. Then I = Ap
for some central projector (=idempotent from the center) p.

Proof. Since I is finite-dimensional, it is unital by Lemma 2.32. Let p ∈ I be the unit
of I. Then for every x ∈ A, one has xp ∈ I, so p(xp) = xp. Hence px∗p = x∗p for any
x ∈ A, whence xp = pxp = px and p belongs to the center of A. Obviously, p2 = p.

Lemma 2.34. A simple finite-dimensional C∗-algebra A is isometrically ∗-isomorphic to
the matrix algebra Mn for some n.

Proof. First of all, note that aAb 6= 0 for any non-zero a, b ∈ A. Indeed, AaA is a non-
zero ideal (since A is unital and 0 6= a = 1 · a · 1 ∈ A), so by simplicity, AaA = A.
Therefore 1 =

∑
i xiayi and b =

∑
i xiayib. Hence, if ayb = 0 for any y ∈ A, then

b =
∑

i xi(ayib) = 0. This contradicts the assumption.
Let B be some maximal commutative subalgebra of A. Then it can be identified

with C(X) = Cn = C · e1 ⊕ . . . ⊕ C · en for some n, where X consists of n points,
and ei ∈ B denotes the element corresponding to the characteristic functions at point
i. Here ei are projections with the relations eiej = 0 for i 6= j and

∑n
i=1 ei = 1. Since

eiAei · ej = ej · eiAei = 0 and B is maximal, then eiAei ⊂ B. Therefore eiAei = C · ei
(since, obviously, 0 6= eiAei 3 ei, or you can use the statement from the beginning of the
proof).

For any i, j there is x = xij ∈ A such that x = eixej 6= 0, ‖x‖ = 1. Indeed, by virtue
of the statement from the beginning of the proof, eiAej 6= 0, so we have x = eiyej with
‖x‖ = 1. In this case eixej = eieiyejej = eiyej = x. Then x∗x = ejx

∗eieixej ∈ ejAej, and
therefore, according to what has been proven, this element has the form αej, α ∈ C. Since
x∗x is a positive element with norm equal to one, then α = 1, so x∗x = ej. Likewise, xx∗ =
ei. Let us denote such x = xij for j = 1 by ui, so that ui = eixe1 = eiuie1. Then u∗iui = e1,
uiu
∗
i = ei, i = 1, . . . , n. Let us set uij := uiu

∗
j . In this case, uie1u

∗
i = uiu

∗
iuiu

∗
i = eiei = ei,
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So uijuji = uiu
∗
juju

∗
i = uie1u

∗
i = ei. Also ejuji = uju

∗
juju

∗
i = uje1u

∗
i = uju

∗
iuiu

∗
i = ujiei,

and eiuij = uiu
∗
iuiu

∗
j = uie1u

∗
j = uiu

∗
juju

∗
j .

If x ∈ eiAej, that is, x = eiaej, then xuji = eiaejuji = eiaujiei ∈ eiAei, so xuji = λei
for some λ ∈ C. Then x = xej = xujiuij = λeiuij = λuij, so for any x ∈ A there is a
number λij(x) ∈ C such that eixej = λij(x)uij. Thus, x =

∑
i,j eixej =

∑
ij λij(x)uij.

The correspondence x 7→ (λij(x)) defines an isomorphism κ : A→Mn (Problem 47).

Problem 47. Check the bijectivity and necessary algebraic properties of κ.

Theorem 2.35. If A is finite-dimensional, then A = ⊕kApk, where pk are central pro-
jections, and each Apk is a matrix algebra Mn(k).

Proof. For a simple algebra, the result follows from Lemma 2.34. If A is not simple,
then I = Ap by Lemma 2.33, where p is a central projection. Then A = I ⊕ J , where
J := A(1 − p). Then J is also an ideal, since (1 − p) is also a central projection, so
A(1 − p)A = AA(1 − p) ⊆ A(1 − p). In this case, the center of A, being a finite-
dimensional commutative algebra, is isomorphic to Cm (functions on finite set), and char-
acteristic functions correspond to the projections. Next, we argue by induction, reducing
the dimension, until we arrive to the sum of simple algebras.

2.8 Non-degenerate representations

Definition 2.36. Let π be a representation of a C∗-algebra A on a Hilbert space H. We
denote by π(A)H the (possibly non-closed) linear space of finite linear combinations of
the form

∑
i π(ai)ξi, where a1, . . . , an ∈ A, ξ1, . . . , ξn ∈ H. A representation π is called

non-degenerate, if π(A)H is dense in H.

Problem 48. If A is unital, then π is non-degenerate if and only if π(1) = 1.

Lemma 2.37. Let I ⊂ A be an ideal and π a non-degenerate representation of I on a
Hilbert space H. Then there is a unique extension π to a representation π̃ of the entire
algebra A on H.

Proof. Let us first define π̃ on vectors from the dense subspace π(I)H ⊂ H by the formula

π̃(a)

(∑
i

π(ji)ξi

)
:=
∑
i

π(aji)ξi. (2.4)

This is well-defined because if
∑

i π(ji)ξi =
∑

i π(j′i)ξ
′
i, then

π̃(a)

(∑
i

π(ji)ξi

)
= lim

λ∈Λ
π̃(a)

(∑
i

π(uλji)ξi

)
= lim

λ∈Λ
π(auλ)

(∑
i

π(ji)ξi

)

and, similarly, π̃(a)(
∑

i π(j′i)ξ
′
i) = limλ∈Λ π(auλ)(

∑
i π(j′i)ξ

′
i), where uλ ∈ I is an approx-

imate unit of I. Note that the existence of the last limit in the chain follows from the
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existence of the penultimate limit. Hence, for each of the two cases it should be proved
separately. Since∥∥∥∥∥π̃(a)

(∑
i

π(ji)ξi

)∥∥∥∥∥ = lim
λ∈Λ

∥∥∥∥∥π(auλ)

(∑
i

π(ji)ξi

)∥∥∥∥∥ 6 sup
λ∈Λ
‖π(auλ)‖ ·

∥∥∥∥∥∑
i

π(ji)ξi

∥∥∥∥∥ 6

6 ‖a‖ · sup
λ∈Λ
‖uλ‖ ·

∥∥∥∥∥∑
i

π(ji)ξi

∥∥∥∥∥ = ‖a‖ ·

∥∥∥∥∥∑
i

π(ji)ξi

∥∥∥∥∥ ,
π̃ is bounded, i.e., π̃(a) extends to a bounded operator in H.

At the same time, it is easy to check π̃(ab) = π̃(a)π̃(b) and π̃(a∗) = π̃(a)∗ for any
a, b ∈ A, so π̃ is a representation of A. Uniqueness follows from the fact that any extension
of π has to satisfy (2.4).

Lemma 2.38. Under the conditions of Lemma 2.37 the representation π is irreducible if
and only if π̃ is irreducible.

Proof. Let π be reduced by a proper invariant subspace L ⊂ H. Then, due to non-
degeneracy, H = π(I)(L+ L⊥) ⊆ π(I)L + π(I)L⊥. Since L⊥ is also invariant, then
π(I)L⊥ ⊂ L⊥, so π(I)L = L. Then π̃(A)L = π̃(A)π(I)L = π(I)L = L and L reduces π̃.
The opposite statement is trivial.

Lemma 2.39. Let π be a representation of A on a Hilbert space H, and I ⊂ A is an
ideal. Then the orthogonal projection p onto π(I)H lies in the center of π(A)′′. If π is
irreducible and π(I) 6= 0, then π|I is also irreducible.

Proof. Since π(A)π(I)H = π(I)H, then π(I)H is an invariant space for π(A), hence p ∈
π(A)′ (see the end of proof of Lemma 2.3). If x ∈ π(I)′, then xπ(j)ξ = π(j)xξ ∈ π(I)H
for any j ∈ I, ξ ∈ H, so pH is an invariant subspace of π(I)′ and, therefore, p ∈ π(I)′′.
So,

p ∈ π(I)′′ ∩ π(A)′ ⊂ π(A)′′ ∩ π(A)′,

that is the center of π(A)′′.
If π is irreducible, then p is a scalar operator (that is, 0 or 1) (cf. Lemma 2.3),

and since π(I) 6= 0, then p = 1. Thus, π|I is non-degenerate. So by Lemma 2.38 it is
irreducible.



Chapter 3

Special classes of C∗-algebras

3.1 C∗-algebra of compact operators

In this section we will consider C∗-subalgebras of C∗-algebra K(H) of compact operators
on the Hilbert space H. We will say that C∗-subalgebra of the algebra B(H) irreducible,
if its identical representation is irreducible.

Definition 3.1. The projection p is called minimal, if there is no projection q 6= 0, q 6= p
such that qp = q. In other words, p does not dominate any non-trivial projection.

Lemma 3.2. Any nonzero C∗-algebra A consisting of compact operators contains a min-
imal projection e and eAe = C · e. If A is irreducible, then e is a rank 1 projection (as a
projection in Hilbert space).

Proof. Since A is nonzero, it contains a nonzero positive operator (see (1.7)), which (as
is known from the basic course of functional analysis, see [5, Theorem 1, p. 360]), has a
discrete spectrum (except of 0) with eigenvalues of finite multiplicities. Let us consider the
spectral projection for a non-zero point of the spectrum. Since the characteristic function
of this isolated point is continuous on the spectrum, then this projection belongs to A.
Then among the nonzero projections dominated by it there is some projection e ∈ A of
minimal rank among the dominated (since they have finite ranks). Then e is minimal (the
uniqueness of the minimal and even the equality of ranks of different minimal projections
is not supposed). If eAe consists not only of C · e, then in the same way we can construct
a projection dominated by e and arrive to a contradiction.

Now suppose that A is irreducible, but the rank of e is greater than 1. Let us choose a
pair of nonzero orthogonal vectors ξ, η in the image e. Since for any a there is a number
λ ∈ C such that eae = λe, we have (ξ, aη) = (eξ, aeη) = (ξ, eaeη) = λ(ξ, η), that is aη ⊥ ξ
for any a ∈ A. Considering all ξ from the image e being orthogonal to η, we see that the
subspace Aη is a proper invariant subspace. A contradiction.

Lemma 3.3. The only irreducible C∗-subalgebra of K(H) is itself.

Proof. Let A be an irreducible C∗-subalgebra of K(H), and e ∈ A a minimal projection of
rank 1. Then there is a unit vector ξ ∈ H such that eη = ξ(ξ, η) for any η (we take ξ from
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the image of e). Due to irreducibility, for any η, ζ ∈ H there are elements a, b ∈ A such that
aξ = η, bξ = ζ (see Lemma 2.5). Moreover, A 3 aeb∗ and aeb∗(κ) = aξ(ξ, b∗κ) = η(ζ, κ),
κ ∈ H. Thus, A contains all operators of rank 1. Such operators generate K(H) (any
compact operator is approximated by finite-dimensional), so A = K(H).

Corollary 3.4. The algebra K(H) is simple.

Proof. Since K(H) is irreducible, then any non-zero ideal is also irreducible (by Lemma
2.39), so it coincides with K(H) (by Lemma 3.3).

Corollary 3.5. Let A be an irreducible C∗-subalgebra of B(H) containing a nonzero
compact operator. Then K(H) ⊆ A.

Proof. Since A∩K(H) is a nonzero ideal of A, it is irreducible by Lemma 2.39. By Lemma
3.3 this subalgebra of K(H) should coincide with the entire K(H).




