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Lecture 9

Theorem 2.22 (Jordan decomposition). Let ψ be a self-adjoint linear functional on
A. Then ψ = ϕ+ − ϕ−, where ϕ+ and ϕ− are positive linear functionals on A and
‖ψ‖ = ‖ϕ+‖+ ‖ϕ−‖.

Proof. Denote by K the set of all self-adjoint linear functionals of norm 6 1, i.e., K ⊂
(A∗)sa. Then K is a ∗-weak closed subset of the unit ball and hence it is ∗-weak compact.
Define an R-linear map

θ : Asa → C(K,R), θ(a)(τ) = τ(a),

so, if a ∈ A, a > 0, then θ(a) > 0 in K. By Lemma 2.16 the mapping θ is an isometry
onto its image.

There is a natural isometry τ 7→ τ ′ of real spaces (A∗)sa and (Asa)
∗
R (real functionals)

(see Problem46). By the Hahn-Banach theorem there is a functional ρ ∈ (C(K,R))∗R
such that ρ ◦ θ = ψ′ and ‖ρ‖ = ‖ψ′‖ (an extension of a functional from the closed
subspace θ(Asa)). Then by the Jordan theorem for measures (as it is explained above
before the formulation) there are positive functionals ρ+ and ρ− such that ρ = ρ+ − ρ−
and ‖ρ‖ = ‖ρ+‖ + ‖ρ−‖. Consider ϕ′+ := ρ+ ◦ θ and ϕ′− := ρ− ◦ θ. These are functionals
from (Asa)

∗
R. Let ϕ+ and ϕ− correspond to them under the identification with (A∗)sa.

Evidently they satisfy all the conditions, except maybe the norm property. Let us verify
it:

‖ψ‖ = ‖ψ′‖ = ‖ρ‖ = ‖ρ+‖+ ‖ρ−‖ > ‖ϕ′+‖+ ‖ϕ′−‖ = ‖ϕ+‖+ ‖ϕ−‖ > ‖ψ‖.

2.6 Linear topological spaces

Definition 2.23. A subset M of a linear space is called balanced, if for any v ∈ M the
vector λv belongs to M for any |λ| 6 1. In particular, M is a star set relative to the zero
of space.

Definition 2.24. A subset M of a linear space is called absorbing, if for any vector v of
the space there is a number α > 0 such that v ∈ βM for |β| > α.

Definition 2.25. A linear space equipped with a topology is called linear topological
space (LTS), if the operations of linear space are continuous.

In the basic course of functional analysis, the following simple statements are proved:
(see [8, Chapter III, §5]):

Proposition 2.26. 1). A base of LTS consists of shifts of neighborhoods of zero.
2). Any vector of LTS and a closed set not containing it have disjoint neighborhoods.

Definition 2.27. An LTS L satisfies the homothety condition, if for any neighborhood
of zero W its homothety λW is also a neighborhood of zero for any λ 6= 0 from the main
field.
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Remark 2.28. Obviously, the topology of a normed space satisfies the homothety con-
dition.

Proposition 2.29. For any neighborhood of zero U of an LTS L with the homothety
condition, there is a balanced neighborhood contained in it.

Proof. Consider the continuous mapping C× L→ L (multiplication) mapping (0, 0L) 7→
0L. Then, by virtue of continuity, there are δ > 0 and a neighborhood of zero W such
that λW ⊆ U for |λ| 6 δ (a non-strict inequality can be achieved by reducing δ from the
standard definition). Let W ′ := ∪0<|λ|61λW . By virtue of 2.27, this W ′ is what we are
looking for.

Remark 2.30. In fact, it can be proven that the base of neighborhoods of zero of an LTS
L can be chosen from absorbing balanced sets, and also that the homothety condition is
in fact not a condition, but we will not need this (see [9, Chapter II, §4]).

We will need the following important result.

Theorem 2.31. Let L be a finite-dimensional space, dimL = n. Then any Hausdorff
topology τ making L a linear topological space Lτ with the homothety condition coincides
with the topology of the Euclidean norm ‖v‖2 =

∑n
i=1 |vi|2, where e1, . . . , en is some base

of L, and v = v1e1 + · · · vnen.

Proof. The space L with Euclidean (or unitary) topology will be denoted by Lu, and
neighborhoods of zero of two topologies (τ and Euclidean) will be denoted by T and U ,
respectively.

Consider an arbitrary T . Then there is a neighborhood T0 such that T0 + · · ·+T0 ⊂ T
(n terms) due to the continuity of the addition operation. For every k there is εk > 0 such
that vkek ∈ T0 for |vk| < εk (k = 1, . . . , n). Let ε := mink εk, and U := {v ∈ L | ‖v‖ < ε}.
Then vkek ∈ T0 for any v ∈ U and any k = 1, . . . , n. Thus, U ⊂ T . From what has been
proved, in particular, it follows that the identity mapping ι : Lu → Lτ is continuous.

Conversely, let U be an arbitrary neighborhood, we can assume that U = B(0, ε) is an
open ball of radius ε with boundary (sphere) S, which is a compact set. Then S = ι(S)
is compact in Lτ . This means that it is closed, since the topology is Hausdorff. Then
there is a stellar neighborhood of zero T (for example, balanced) that does not intersect
S by virtue of propositions 2.26 and 2.29. Moreover, T ⊆ U , since otherwise there exists
a vector v ∈ T such that ‖v‖ > ε, and if we put α := ε/‖v‖, w := αv, then α 6 1, so
w ∈ T by the star property. But ‖w‖ = ε, so w ∈ T ∩ S = ∅. A contradiction.

2.7 Finite-dimensional C∗-algebras

Consider the ∗-weak topology on A defined by the seminorm system a 7→ |ϕ(a)| for
all linear functionals ϕ. From Lemma 2.20 and Theorem 2.22 it follows that the same
topology can be obtained by using only seminorms, defined by states.

Note also that the corresponding LTS has the homothety property 2.27.
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Lemma 2.32. A finite-dimensional C∗-algebra is always unital.

Proof. If A is finite-dimensional, then the topology of the norm coincides with the ∗-weak
topology according to Theorem 2.31. Let un be an approximate unit of the algebra A.
Then for any state ϕ the sequence ϕ(un) is non-decreasing and bounded. Therefore un
converges in ∗-weak topology, and therefore in norm. Thus, there is a limit limn un = a.
Then ax = xa = x for any x ∈ A, so a = 1.

Lemma 2.33. Let I ⊂ A be an ideal in a finite-dimensional C∗-algebra A. Then I = Ap
for some central projector (=idempotent from the center) p.

Proof. Since I is finite-dimensional, it is unital by Lemma 2.32. Let p ∈ I be the unit
of I. Then for every x ∈ A, one has xp ∈ I, so p(xp) = xp. Hence px∗p = x∗p for any
x ∈ A, whence xp = pxp = px and p belongs to the center of A. Obviously, p2 = p.

Lemma 2.34. A simple finite-dimensional C∗-algebra A is isometrically ∗-isomorphic to
the matrix algebra Mn for some n.

Proof. First of all, note that aAb 6= 0 for any non-zero a, b ∈ A. Indeed, AaA is a non-
zero ideal (since A is unital and 0 6= a = 1 · a · 1 ∈ A), so by simplicity, AaA = A.
Therefore 1 =

∑
i xiayi and b =

∑
i xiayib. Hence, if ayb = 0 for any y ∈ A, then

b =
∑

i xi(ayib) = 0. This contradicts the assumption.
Let B be some maximal commutative subalgebra of A. Then it can be identified

with C(X) = Cn = C · e1 ⊕ . . . ⊕ C · en for some n, where X consists of n points,
and ei ∈ B denotes the element corresponding to the characteristic functions at point
i. Here ei are projections with the relations eiej = 0 for i 6= j and

∑n
i=1 ei = 1. Since

eiAei · ej = ej · eiAei = 0 and B is maximal, then eiAei ⊂ B. Therefore eiAei = C · ei
(since, obviously, 0 6= eiAei 3 ei, or you can use the statement from the beginning of the
proof).

For any i, j there is x = xij ∈ A such that x = eixej 6= 0, ‖x‖ = 1. Indeed, by virtue
of the statement from the beginning of the proof, eiAej 6= 0, so we have x = eiyej with
‖x‖ = 1. In this case eixej = eieiyejej = eiyej = x. Then x∗x = ejx

∗eieixej ∈ ejAej, and
therefore, according to what has been proven, this element has the form αej, α ∈ C. Since
x∗x is a positive element with norm equal to one, then α = 1, so x∗x = ej. Likewise, xx∗ =
ei. Let us denote such x = xij for j = 1 by ui, so that ui = eixe1 = eiuie1. Then u∗iui = e1,
uiu
∗
i = ei, i = 1, . . . , n. Let us set uij := uiu

∗
j . In this case, uie1u

∗
i = uiu

∗
iuiu

∗
i = eiei = ei,

So uijuji = uiu
∗
juju

∗
i = uie1u

∗
i = ei. Also ejuji = uju

∗
juju

∗
i = uje1u

∗
i = uju

∗
iuiu

∗
i = ujiei,

and eiuij = uiu
∗
iuiu

∗
j = uie1u

∗
j = uiu

∗
juju

∗
j .

If x ∈ eiAej, that is, x = eiaej, then xuji = eiaejuji = eiaujiei ∈ eiAei, so xuji = λei
for some λ ∈ C. Then x = xej = xujiuij = λeiuij = λuij, so for any x ∈ A there is a
number λij(x) ∈ C such that eixej = λij(x)uij. Thus, x =

∑
i,j eixej =

∑
ij λij(x)uij.

The correspondence x 7→ (λij(x)) defines an isomorphism κ : A→Mn (Problem 47).

Problem 47. Check the bijectivity and necessary algebraic properties of κ.

Theorem 2.35. If A is finite-dimensional, then A = ⊕kApk, where pk are central pro-
jections, and each Apk is a matrix algebra Mn(k).
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Proof. For a simple algebra, the result follows from Lemma 2.34. If A is not simple,
then I = Ap by Lemma 2.33, where p is a central projection. Then A = I ⊕ J , where
J := A(1 − p). Then J is also an ideal, since (1 − p) is also a central projection, so
A(1 − p)A = AA(1 − p) ⊆ A(1 − p). In this case, the center of A, being a finite-
dimensional commutative algebra, is isomorphic to Cm (functions on finite set), and char-
acteristic functions correspond to the projections. Next, we argue by induction, reducing
the dimension, until we arrive to the sum of simple algebras.


