Hilbert C*- and W*-Modules and
Their Morphisms

V. M. Manuilov, E. V. Troitsky

CONTENTS

1. Basic definitions 2
1.1. C*-algebras 2
1.2. Pre-Hilbert modules 4
1.3. Hilbert C*-modules 5
1.4. The standard Hilbert module H 4 8
2. Operators on Hilbert modules 10
2.1. Bounded operators and operators admitting an adjoint 10
2.2. Compact operators in Hilbert module 13
2.3. Complementable submodules and projections in Hilbert C*-modules 16
2.4. Full Hilbert C"-modules 18
2.5. Dual modules. Self-duality 20
2.6. Banach-compact operators 23
2.7. C*-Fredholm operators. Index 24
2.8. Representations of groups on Hilbert modules 32
3. Hilbert modules over W/ *-algebras 40
3.1. W*-algebras 40
3.2. Inner product on dual modules 41
3.3. Hilbert W*-modules and dual Banach spaces 43
3.4. Properties of Hilbert W*-modules 45
3.5. Topological characterization of self-dual Hilbert

W*-modules 46
3.6. Fredholm operators over W*-algebras 47
4. Reflexive Hilbert C*-modules 50
4.1. Inner product on bidual modules 50
4.2. Reflexivity of Hilbert modules over KT 54
4.3. Reflexivity of modules over C'(X) 56
4.4. Hilbert modules related to conditional expectations of finite index 58

Hilbert C*-module is a natural generalization of a Hilbert space arising under replacement of the field
of scalars C by a C*-algebra. For commutative C*-algebras such a generalization was for the first time
discribed in the work of I. Kaplansky [30], however the noncommutative case looked at that time like a
complicated one for study. The general theory of Hilbert C*-modules has appeared 25 years ago in the
basic papers of W. Paschke [52] and M. Rieffel [56]. This theory has proved to be a very convenient tool
in the theory of operator algebras, allowing to study C*-algebras by studying Hilbert modules over them.
In particular, a series of results about such classes of C*-algebras as AW *-algebras and monotoneously
complete C*-algebras was obtained [21]. In terms of Hilbert modules the important notion of Morita-
equivalence was formulated for C*-algebras [57, 14]. This notion has also applications in theory of group
representations. It turned to be possible to study group actions with the help of Hilbert modules arising
from such actions [54, 58]. Some results about conditional expectations of finite index [7, 69] and about
completely positive maps of C*-algebras [4] were also obtained.

The theory of Hilbert C*-modules may be considered also as a noncommutative generalization of
the theory of vector bundles [19, 36]. This was the reason for Hilbert modules to become a tool in
topological applications — namely in index theory of elliptic operators, in K-theory and in K K-theory
of G. G. Kasparov [48, 46, 32, 34, 33, 35, 66] and in noncommutative geometry in whole [15, 16].

Among other applications it is necessary to emphasize the theory of quantum groups and unbounded
operators [70, 71, 5, 6] and some physical applications [39, 2].



Alongside with these applications the theory of Hilbert C'*-modules itself has been developed too. A
number of results about the structure of Hilbert modules and about operators on them was obtained [41,
22, 44,42, 43, 65]. Besides that an axiomatic approach in theory of Hilbert modules based on the theory
of operator spaces and tensor products was developed [10, 11].

The detailed bibliography of the theory of Hilbert C*-modules can be found in [24].

A significant part of results presented here was only announced in the literature or the proofs were
discussed only in brief. We have tried to fill such lacunae. We can not discuss here all aspects of the
theory of Hilbert modules, but we have tried explicitly to explain the basic notions and theorems of this
theory, a number of important examples, and also some results, related to the authors’ interest.

The major part of the presented material formed the content of lecture course presented by the authors
at the Department of Mechanics and Mathematics of Moscow State University in 1996.

We are grateful to A. S. Mishchenko for introducing us to the theory of Hilbert C*-modules. Together
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1 Basic definitions

1.1 (C~-algebras

The basic information about C*-algebras can be found in the books [17, 55, 62, 29]. We will present some
results on C*-algebras, which will be necessary for us further on.

Remind that an involutive Banach algebra is called a C*-algebra, if for each its element a the following
relation

lla*al] = [|all*

is fulfilled. Any such algebra can be realized as a norm-closed subalgebra of the algebra of bounded
operators B(H) on Hilbert space H. We do not assume the presence of the unity element in C*-algebras.
By AT we denote the C*-algebra obtained from C*-algebra A by unitization (taking direct sum with
complex numbers).

We need also the notion of a positive element of a C*-algebra. First of all we remind that the spectrum
of an element a of a unital C*-algebra is the set Sp(a) of complex numbers z such that a — z - 1 is not
invertible. If a C'*-algebra A has no unity, then the spectrum of the element a € A is its spectrum in the
C*-algebra AT D A. Spectrum is a compact subset of C. An element a € A is called positive (we write
a > 0), if it is Hermitian, i. e. satisfies the condition ¢* = a, and if one of the following equivalent [17,
1.6.1] conditions is carried out

(i) Sp(a) C [0, 00);
(i1) a = b*b for some b € A;
(iii) @ = h? for some Hermitian h € A.

The set of all positive elements P*(A) forms a closed convex cone in A and PT(A) N (—P*(4)) = 0.
Among the elements h existing by the item (iii) there exists only one positive, called the positive square
root of a (we write h = a'/?).

We remind also that a linear functional ¢ : A—C is called postive if ¢(a) > 0 for any positive
element a € PT(A). A positive linear functional is called a state if ||p|| = 1. We have ||a|| = sup ¢(a),
where a > 0, and sup is taken over all states.

A C*-homomorphism of an algebra A into the C*-algebra B(H) of all bounded operators on a Hilbert
space H is called a representation. A vector & € H is called cyelic for the representation = : A—B(H),
if the set of all vectors of the form w(a)¢, a € A, is dense in H. The vector & € H is called separating for
the representation 7 : A—B(H), if the equality m(a)é = 0 implies a = 0.



We can associate with each positive linear functional w on a C*-algebra A a unique (up to unitary
equivalence) representation m, of the algebra A on some Hilbert space H,, and a vector £, € H,, such that
w(a) = (my(a)éw,&w) for all @ € A and the vector &, is cyclic. The construction of such a representations
is called the GNS-construction.

An approzimate unit of a C*-algebra A is an increasing net e, € A, a € A, such that ||eq|| < 1 and
lim|la — aey|] = 0 for any a € A. Each C*-algebra has an approximate unit e, such that e, > 0 and
eq > eg for a > 8 [17)].

Definition 1.1.1 A (C*-algebra possessing countable approximate unit, is called o-unital.
Definition 1.1.2  An element h € A is called strictly positive if for any positive nonzero ¢ (or, equally,
for any state) one has ¢(h) > 0.

Remark 1.1.3  These two conditions are equivalent. It is possible to consider ¢; > 0. Then b := 3", ;)2

is strictly positive. Conversely, e; := h'/* is a countable approximate unit. Separable algebra always
satisfies these conditions. The details can be found in [55].
We will often use the following statements.

Lemma 1.1.4 [55, Lemma 1.4.4] Let , y and a be elements of a C*-algebra A such that a > 0 and

r < a® yyt < d”, a+ 8> 1.

— bl

Then the sequence u, = z[(1/n) + a]='%y is norm convergent in A to such u, for which ||u|| <
|latetf=1)/2||.

Proof: Put d,.,,, :=[(1/n) + a]=Y/? = [(1/m) 4 a]~'/%. Then
s =t = [|dnml* = 19" dramne™ 2 dnimyl] < (13" dnma® dpmyl] = la®/*duyl|” =

= |a®" 2 dpmyy” dnma®?|] < ||a® *dpma® dpma®?|| = ||dpma®FP72)|2

Studying the convergence of a monotone sequence on a spectrum a, we obtain by the Dini theorem the
uniform convergence of

[(1/n) + ]/ 2(et)/2 __ qleatB=1)/2 t € Sp(a).

Therefore, ||dpmal®T#/2|| = 0, so that by the Cauchy criterion {u,} is norm convergent to an element
u € A. Then reasoning as above we obtain

l[nll = [J2[(1/n) + a] =/ ?y[] < [|a®/*[(1/n) + a]7/?a’2|| < [|alF2= 172,
So that ||u]] < ||al®+tF=1/2|. |

Proposition 1.1.5 [65, Prop. 1.4.5] Let & and a be elements of a C*-algebra A such that a > 0 and
z*x <a. Forany 0 < a < % there exists an element u € A such that ||ul| < ||a%_°‘|| and r = ua®.

Proof: Let us define u,, := z[(1/n)+a]"2a?~*. By Lemma 1.1.4 {u,} is norm convergent to an element

u € A such that ) )
Jul] < [JlazH =220 = Jlaz .

Further,
le = wna® || = fle(1 = [(1/n) + o] 72" /)|) < [la'*(1 = [(1/n) + o] /2a'?)||* — 0

for n — oo by the Dini theorem being applied to appropriate functions on the spectrum. Thus, = ua®.
O



1.2 Pre-Hilbert modules

Let M be a module over C*-algebra A. The action of an element @ € A on M we denote by z - a, where
reM.

Definition 1.2.1 Pre-Hilbert A-module is a (right) A-module M equipped with a sesquilinear form
(-, ) : M x M— A satisfying the following properties

(i) (z,z)> 0 for any = € M;
(ii
(iii
(i

The map (-, -) is called an A-valued scalar (or inner) product.

(x,2) = 0 only in the case, when z = 0;

(y,2) = (x,y)" for all z,y € M;
(x,y-a) =(z,y)afor all z,y € M, a € A.

)
)
)
v)

Let us consider a few examples.

Example 1.2.2 If J C A is a right ideal, then J can be equipped with the structure of pre-Hilbert
A-modle if we define the inner product of elements x,y € J by the equality (z,y) := «*y.

Example 1.2.3 If {J;} is some countable set of right ideals in C*-algebra A, then the linear space
M of sequences (z;), #; € J;, satisfying the condition ), ||3L‘Z||2 < 00, becomes a right A-module if
(;) - a:= (x;a) for (z;) € M, a € A, and becomes a pre-Hilbert A-module if we define the inner product
of elements (z;), (y;) € M by the equality ((z;), (v:)) == >, =] vi-

Let K be a right A-module equipped with a sesquilinear map [-, -] : K x K—A, satisfying all properties
of Definition 1.2.1 except (ii). Put
N ={z ek :[z,2]=0}.

For each positive linear functional ¢ on the C*-algebra A the map (z,y) — ¢([#,y]) is a (degenerate)
inner product on K, and hence the set N, = {# € K : ¢([#, z]) = 0} is a linear subspace in K. By taking
the intersection of all such subspaces we obtain that N = N N, is also a linear subspace in K. From
properties (iii) and (iv) of Definition 1.2.1 it follows that N - A C N, therefore N is a submodule in K.
The quotient module M = K/N is equipped with the obvious structure of a pre-Hilbert A-module with
the inner product (z + N,y + N) := [z, y].

Let M be a pre-Hilbert A-module, z € M. Put ||z| ,, := [|(z, J:>||1/2. We will omit the index M if it
will not lead to a confusion of norms.

Proposition 1.2.4 ([52]) The function ||-||\, is a norm on M and satisfies the following properties
() [le-allpg < lzllpg - llall for all v € M, a € A;
(i) (=, 90y, @) < llylli (2, 2) for all 2,y € M;
(i) [[{z, 9 < 1l p Nyl g Jor all w,y € M.
Proof: For any positive linear functional ¢ on A the function # — ¢((z, x>)1/2 defines a seminorm on

M. For each z € M "
2]l g = Iz, @) = sup{e((z, 2)'/?},
where the supremum is taken over all states ¢ on A. Therefore ||-|| ., is a seminorm, and by the property
(ii) of Definition 1.2.1 |||| ., is a norm on M. Statement (i) follows from the equahty
2 2 2 2
2 - ally = (2 - a, 2 - a)|| = [|a" (@, w)all < {lal|” [[{=, )| = [|z[|a [lal]”-

To prove the statement (ii) we will take #,y € M and a positive linear functional ¢ on A. Applying the
Cauchy-Bunyakovskii inequality for the (degenerate) inner product ¢({:, -)) on M we obtain

e((z, )y, 1)) = oz, y-(y, ) < oz, )2 oy - (y,2), y- (y, 2))/?
= o((z, )Y o )y, v (w22 < o, )Y 1y )17 - o, )y, )2,



Thus, for any positive linear functional ¢ we have ¢({y, z){x,y)) < ||y||i/l - p({z,x)). Therefore, the
statement (ii) is proved. It evidently implies the statement (iii). O

The inequality (ii) (and also its concequence — the inequality (iii) ) of Proposition 1.2.4 we will call
the Cauchy-Bunyakovskii inequality for Hilbert modules.
Remark 1.2.5 For any C*-pre-Hilbert module, or more precisely, for any sesquilinear form (.,.), the
following polarization equality is obviously satisfied

4<y,x>:2ik<x+iky,x+iky> for all z, y € M.
k=0

1.3 Hilbert C*-modules

Definition 1.3.1 An A-module M being at the same time a Banach space with a norm ||| satisfying
the inequality ||z - a|| < ||z|| |la|], © € M, a € A, is called a Banach A-module.

Definition 1.3.2 A pre-Hilbert A-module M, which is complete with respect to the norm ||-|| ,, is called
a Hilbert C* -module.

If M is a pre-Hilbert A-module then the action of the C*-algebra A and the inner product on M
extend to the completion M, which thus becomes a Hilbert module. Let us consider some examples.

Example 1.3.3 If J C A is a right ideal, then the pre-Hilbert module J is complete with respect to the
norm ||-||; = [|-||. In particular, the C*-algebra A itself is a free Hilbert A-module with one generator.

Example 1.3.4 If {M;} is a finite set of Hilbert A-modules, then it is possible to define their direct
sum &M;. The inner product on &M; is defined by the formula (z, y) := >, (s, yi), where 2 = (2;),y =
(y;) € ®M,. The direct sum of n copies of a Hilbert Module M we will denote by M”™ or L, (M).

Example 1.3.5 If {M;}, i € N, is a countable set of Hilbert A-modules then it is possible to define
their direct sum GM;. We shall define the inner product on the A-module &M, of all sequences = =
(#;) : 2; € M; such that the series ), (x;, #;) is norm convergent in the C*-algebra A, by the formula

(z,y) = ZZ (x5,y;) for x,y € ®BM,;.

Let us show that the mentioned series converges. From the convergence of series >, (#;, z;) and >, (ys, vi)
it follows that for any ¢ > 0 there exists a number N such that for all n > 0 the following estimate holds

N+4n N+4n
Z (zi, 2)|| < e, Z (yi, ui)| <e.
i=N i=N
Then
N+n N+n N+n
D (|| < || D0 (o)l | D wowd|| <27
i=N i=N i=N

This proves that the inner product i1s well-defined.

Let us verify completeness of the module @AM;. Let () = J:Z(n)) € &M, be a Cauchy sequence.

(
Then for any € > 0 there exists a number N such that for all n,m > N

<e. (1)




(n

holds for each number ¢ separately. But then the sequences z; ) € M; are the Cauchy sequences; and

they have limits x; = lim xl(»n) € M;. Let us verify that a series >, (®;, 2;) is norm convergent in A. Let
us fix € > 0. There exists a number n > N such that the estimate (1) is valid. Let us choose a number K
satisfying the condition

Z <J:Z(»n), J:Z(n)> < e.
i=K
Then for any & > 0 we have
K4k
S (G2l + @ = a4+ @2l =) 4 (@, M) H
i=K
K+k 00
— Z <xl(”) _ x(m)’ xl(”) _ x(m)> < Z <xl(”) _ x(m),x n) _ x(m)> <,
=K i=1
Therefore,
K+k K+k K+k
S SATINC) PR | S R TRREN [N | PR e
=K =K =K
K+k 1/2 12
B | ST IR TR
i=K
1/2
< e 2e (@™, o)
Now by solving the square inequality, we obtain that
K4k
ST @™ ™ < (14 V3)% < 8e (2)
i=K

Passing in the inequality (2) to the limit m — oo, we obtain that

K+k

> (wiye)

i=K

< 8e¢.

This proves that the series >, (#;, #;) is norm convergent.

The direct sum of a countable number of copies of a Hilbert module M we shall denote by {5(M) or
H aq. The Hilbert C*-module l2(A) (other denotation is H,) we call the standard Hilbert module over A.
If the C*-algebra is unital then the Hilbert module H4 possesses the standard basis {¢; }, i € N, where
e; = (0,...,0,1,0,...,0,...) with the unit at the é-th place.

Example 1.3.6 Let B C A be a C"-subalgebra of a C*-algebra A having the common unit. Let us
assume that there exists a linear map £ : A— B not increasing norms and being a projection, that is
E? = E. Such a map is called a conditional expectation from A to B. Conditional expectation is a positive
map, i.e. E(a*a) > 0 for all a € A, and it satisfies the equality

E(blabz) = blE(Cl)bz for a € A, bl, b, € B

(see [62]). A conditional expectation is called eract, if for any positive element a € PT(A) the equality
E(a) = 0 implies @ = 0. In the case when the conditional expectation is exact, it is possible to introduce
the structure of a pre-Hilbert B-module on the C*-algebra A by putting

(v,y)= E(x"y), =y€A

We will give a condition for this module to be a Hilbert module (i.e. to be complete) in the section 4.4.



Let N/ C M be a closed submodule of a Hilbert module M. We define the orthogonal complement
Nt by the equality
Nt={yeM:(z,y)=0 forallze N}

Then Nt is a closed submodule of the Hilbert module M too. However, the equality M = N @ N+t is
fulfilled not always, as shows the following

Example 1.3.7 Let A = C10,1] be the C*-algebra of all continuous functions on the segment. Let us
consider in the Hilbert A-module M = A the submodule A" = Cy(0, 1) of functions, vanishing at the end
points of the segment [0, 1]. Then, obviously, N'* = 0.

If M is a Hilbert A-module then we denote by M - A the closure in M of the linear span of the
elements of the form z -a, r € M, a € A.

Lemma 1.3.8 M - A =M.
Proof: Let ¢, € A be an approximate unit. Then for any z € M
lz =2 -call” = l{z = 2 az — - ca)l| < (L+|eill) [[{z, 2) = (&, 2)eal| = 0,
that proves that the elements of the form z - e, are dense in M. 0O
We will often use the following useful statement.
Lemma 1.3.9 For any x € M

r = ah_l% x(x, x)((x,x) +¢)7 L

Proof: Let {x,z) = a, then
oz, w)((z, 2) + )7 — 2l = (e ((z, &) ((x, 2) + &) 7" = 1), w({z, 2)((z, 2) + &) F = 1)|| =
= ||la(a*(a +¢)"% = 2a(a+ &)t + 1)|| = ||a*(a + )7 = 2a*(a + &)™ +a|| — 0,

because the following inequalities hold under the condition ¢ > 0

2 2 2
t —e — 2¢t et + 2t 3
Bt+e)? —t|= |t 1) =tl—— )| =e|—| <e(l/2+2) ==
e (Q+f) ) (e | = | s =020 =3
and
te
12t ¢ = . ]
[t (t + ¢) | e <€

The following statement is an analog of polar decomposition for Hilbert modules. We will see below
that, as well as in the case of algebras, the exact polar decomposition exists only in the case of Hilbert
modules over W*-algebras.

Proposition 1.3.10 ([38]) Let M be a Hilbert A-module, x € M, and 0 < o < 1/2. Then there exists
an element z € M such that x = z - (x, z)".

Proof: For n € N let us define functions

—of2 A</
n , ecm A< 1/n,
gn(A) = { /\04/2’ ecau A > 1/n.

Then by the spectral theorem

1z - (gn (2, 2)) = gm ((z, 2)))]

(2, 2) (g (2, 2)) = g ({2, 2))?||
= sup{A(gn(\) — g (\)] : A € Sp((w, 2))}.

Therefore the sequence # - g, ((x, z)) is a Cauchy sequence, so and it has a limit z € M. Then
[2(z, @) — 2|l = lim |z ga ({2, 2))(x,2)" — @l = lim {lz(gn((2, 2)) {2, 2)" = 1)]]

= li_}rn sup{|/\1/2(gn(/\)/\a — 1) : A€ Sp(z,z)} = 0.

This completes the proof. 0O

A Hilbert C*-module M is called finitely generated if there exists a finite set {#;} C M such that M
equals the linear span (over C and A) of this set. A Hilbert C*-module M is called countably generated
if there exists a countable set {#;} C M such that M equals the norm-closure of the linear span (over C

and A) of this set.



1.4 The standard Hilbert module /74

Theorem 1.4.1 (Kasparov stabilization theorem, [34]) Let A be a C*-algebra, M be a countably
generated Hilbert A-module. Then M @& Hy = Hy.

Proof: We start by proving the theorem for the case of unital C'*-algebra A. For this purpose it is
convenient to use the procedure of almost-ortogonalization [20]. An element z of the Hilbert module A
is called non-singular if the element (z,z) € A is invertible. The set {x;} € N is called orthonormal if
(xi, ;) = 0i;. It is called basis of the module A if finite sums of the form >, x; - a;, a; € A, are dense in

Lemma 1.4.2 ([20]) Let N be a Hilbert A-module containing the orthonormal elements e, ... e,, €
N, e> 0. If an element y € N satisfies {y,y) = 1 and yL{x,e1,...,e,} then there exists an element
ent1 € N such that

(1) the elements ey, ... ey, enq1 are orthonormal,
(i) ent1 € Spany(e1, ..., en, 2, y),
(iii) dist(z,Spany(e1,...,ent1)) < €.
Proof: Let
x/:x—Zei<ei,x>, =2 +ey.
Then
<l‘//,l‘//> — <l‘/,l‘/> —1—62 Z 62 > 0’
therefore the element z’' is nonsingular. Let’s put e,41 = 2’ - (¢", x”>_1/2. Then
ent1 € Span (2, y) L{er, ... en}.

Therefore the elements ey, ..., e,, en41 are orthonormal. Since ' € Span,(z,e1,...,e,) and e,4q €
Span 4 (#',y), we obtain the statement (ii). Finally, let us put

n
w=eqq1{z”, x”>1/2 + Z ei{e;, ®) € Span,(e1,...,eny1),
i=1

and the equality |jw — #|| = || — &|| = ||ey|| = € proves the statement (iii) . O

We return now to the proof of Theorem 1.4.1. Let {y, } be the sequence of generators of module M.
By {en} we denote the standard basis of the module H 4. Let {#,} C {e, }U{yn} be a sequence, in which
one meets each element e, and each element y, infinitely many times. Then the set {z,} is generating
for the module M & H 4. We will prove the theorem by induction. Let us assume that the orthonormal
elements €;,...,8, € M @& H,4 and a number m(n) > n are already constructed in such a way that

(i) {€1,...€n} CSpany(x1,...,Tpn,€1,.. ., Em(n)),
(ii) dist(xzg,Spany(€1,...,€)) < %, 1<k <n.

Since each element x; is equal to e; or yg, it is possible to find a number m’ > m(n) such that
em 1{®1, ..., ®nq1}. Since e L{e1, ..., em(n)}, s0 it follows from the condition (i) that

em’L{$n+1a€1a .- agn}

By Lemma 1.4.2 there exists an element

€nt1 € Spany (€1,. .., 8, Tnt1, Em’) (3)
such that the elements €1, ...,€,,€,41 are orthonormal and
dist (21, Span, (71, -, Fns1)) < —
ist(x any(€1,...,€ .
n41,0pallgl€q, y En41 = +1



It follows from (3) and from the condition (i) that

{€1, .. 81} CSpany (@1, ..., o1, €1, €ms).

By putting m(n—+1) = m’ we complete the step of induction. Thus, an orthonormal sequence €, satisfying
the properties (i) and (ii) has been constructed. But the property (ii) means that this sequence generates
the whole module M & H 4, therefore M @& Hyq = Hy.

So, the theorem 1.4.1 is proved for unital C*-algebras. Let A be a C*-algebra without unit and AT
be its unitization. By defining the action of AT on the Hilbert A-module M by the formula z - (a, A) :=
r-at+azh v e M, (a,A) € AT, X € C, we turn M into a Hilbert A*-module. Let us consider the
At-module H 4+ and denote by H 4+ A the closure in H 4+ of the linear span of elements of the form z - a,
x € Hyv, a € A. It 18 easy to see that H 4+ A = H4. The 1somorphism M @ H 4+ = H 4+ implies the
isomorphism

MOHy=MAD Hy+ A= (M@HA+)AEHA+A:HA,
This completes the proof of the theorem. O

Definition 1.4.3 Let M be a Hilbert A-module such that there exists a Hilbert A-module A, for which
holds M @ N = L,,(A) with finite n. Then M is called finitely generated projective A-module.

The following two theorems of Dupre and Fillmore show, that finite-dimensional projective submodules
in Hilbert modules have the sinpliest location.

Theorem 1.4.4 (Dupre — Fillmore, [20]) Let A be a unital C*-algebra, M be a finite-dimensional
projective A-submodule in the standard Hilbert A-module H 4. Then

(i) the nonsingular elements of the module ML are dense in M*;
(i) Ha= Mo ML
(iii) MLt = Hy.

Proof: We begin the proof of the theorem with the case when M = L, (A). Let g1,...,9, be an
orthonormal basis in M. We fix ¢ > 0. For each m let’s put

n
€ = em — Y gi{gi, em),
i=1

in such a way that e/, € M*. Then

n

<6;n’ 6in> =1- Z <6m,gi><gi, 6m>~

i=1

Since the eqality (x, ey, ) — 0 is fulfilled for each « € H 4, we conclude that (el , el ) — 1, therefore there

m? m
exists a number mg such that for m > mg the elements e/, are nonsingular. Then it is possible to define

"ot >—1/2’

€m = 6m<6m, m

such that (el e’y =1. Let x € ML . Then

m?) - m
(etns @) = (€l em) T2l @) = (el €)™ em, 2) = 0.
Let us select a number m > mg such that |[{e)l , z}|| < ¢ and let us put
¥ =zx+ 66:7/1.

It is easy to see that
o’ =l = . (4)



Let us show that the element z’ is nonsingular. Put

w=a -l a), v =c((eha)+el).

Then uLlv (since ulel) and &’ = u 4 v. Therefore,
(2!, 2) = {u,u) + (v, v) = (u,u) + (e, 2) + 1) (e, 2) + € 1), (5)

and the right side of the equality (5) is invertible, since ||[{e// , z}|| < . Therefore, (&', ') is invertible too.
Together with the estimate (4) this proves the statement (i).

Let {2,} be a sequence, in which each element e, is repeated infinitely many times . Let us put
© =z — Y i 9i(gi,z1). Then (taking ¢ = 1) it is possible to find an element g,41 € ML such that
(gn+1,9n+1) = 1, dist(z, gn41A4) < 1, and, therefore dist(z1, Span, (91, ...,9n+1)) < 1. At the next step
we replace the module M by Span,(g¢1,...,9n+1), #1 by ®2, and ¢ = 1 by ¢ = 1/2. Going on with the
indicated procedure, we will obtain an orthonormal basis {gi }, k¥ € N, extending the basis g1,..., g, of
submodule M, and {gx : k > n} is a basis of the module M<*. This proves the statements (ii) and (iii).

We pass now to the case of an arbitrary finitely generated projective module M. Let M @GN = L, (A).
By Theorem 1.4.1 N @ H 4 = H4 holds, therefore

Ly(A)ZNOMCNOGHs = Hy.

Hence, if K is the orthogonal complement for submodule A" @ M in the module ' ¢ H 4, then K = H 4
and N& M@K =N @ H,. But obviously K = M* is the orthogonal complement of the submodule M
in the module H4. 0O

Theorem 1.4.5 ([20]) Let A be a unital C*-algebra and let M be a finitely generated projective Hilbert
submodule in an arbitrary Hilbert A-module N'. Then N = M @ M*.

Proof: Similarly to the previous theorem the proof can be reduced to the case when M = L,(A) is a
free module. If {g1,...,9,} is the standard basis of M, and € N, then put #’ = = — >, ¢:(gi, ¥).
Then ¢’ € M, and = — &' € M*, therefore, N = M e ML, O

2 Operators on Hilbert modules

2.1 Bounded operators and operators admitting an adjoint

Let M, N be Hilbert C*-modules over a C*-algebra A. The bounded C-linear A-homomorphisms from
the module M to the module A are called operators from M to A'. We denote by Hom 4 (M, N) the set
of all operators from the module M to the module N'. If N' = M, then Enda (M) = Hom4 (M, M) is
obviously a Banach algebra. However, we shall see soon that there is no natural involution on this algebra.
Let 7' € Homa (M, N). We say that T' admits an adjoint if there exists an operator T* € Hom4 (N, M)
such that forallz e M,y e N

(Tx,y) = (z,T7y).

Lemma 2.1.1 Let M be a Hilbert A-module, T : M — M and T : M — M be maps such that for any
ryeM
(x, Tyy = (T"z,y).

Then T (and T* as well) is a bounded homomorphism from Enda(M). Therefore, T € End’ (M).
Proof: For any z, y and z from M, w € C and @ € A one has
(2, T+ y)y=(Tz,a+y) = T z,2)+ (T*z,y) = (z,Ta) + (z,Ty) = (z, Te + Ty),

(2, Twr) =(T"z,x)w = (z, Teyw = {z, wTz),
(2, T(za)) = (T"z,za) = (T*z,x)a = (z, Txya = (z, (Tx)a).

10



Since z is an arbitrary element, it follows that
T(x+y) =Te+ Ty, T(wz) = wTe, T(za) = (Tx)a,

and linearity properties hold.
To prove the continuity 7' we should verify that its graph is closed. Let x4 — #, T(24) — y in M,
and z € M be an arbitrary element. Then

0=(T"(y—Ta),xq) —(T"(y—Tx), x4)
={y—Tz,T(xa)) — (T (y—Tx),2q) — (y—Tx,y) — (T (y—Ta),z) ={y — Te,y— Tz). a
We show now that there exist operators without adjoint.

Example 2.1.2 Let A be a unital C*-algebra. As above, the standard basis of the Hilbert module H 4
consists of the elements ¢; = (0,...,0,1,0,...), where 1 is at the i-th place. Tt is possible to associate
with each operator £ € End 4 (H4) its matrix with respect to this basis:

Wi, tiy = (eq, Tej).

Then the adjoint operator has the matrix [|¢7]].
Let A= C([0,1]), and let the functions ¢; € A, i = 1,2,.. . be defined by the equality

0 on [O,H_%] and [+, 1],
;=<1 at the point xlzé(%+l_l_%), .

islinear on [H—Ll’ z;] and [, Zl]a

Let an operator 7' € End 4 (H 4) has the matrix

w1 P2 Y3
0 0 0
0 0 0

(actually it is an operator from the module H4 to A, i.e. an A-functional). It is easy to verify that T is
bounded. But the operator 7™ is not well-defined, since it should have the matrix

1 0 0
5 0 0 ...
ey 0 0 .o )

but the image of the basis element e; should have the first column as its coordinates, i.e. an element of
H 4, however the series > ;¢F does not converge with respect to the norm in C*-algebra A.

The set of all operators from the module M to the module A" admitting an adjoint we denote by
Hom’, (M, N). The algebra End’ (M) = Hom}y (M, M) is a Banach involutive algebra. Moreover, it is a
C*-algebra; it follows from the estimate

T > swp (TTwe)l = sup {(Tw, 7o)} = |7,
zE€B1 (M) z€B1 (M)

where the unit ball in the module M is denoted by B;(M).

The following statement will be used by us frequently without special reference.

Proposition 2.1.3 For an operator T': M — M the following conditions are equivalent:
(i) T is a positive element of C*-algebra End™ (M);

(i) for any x € M the inequality (Tx,x) > 0 is fulfilled, i.e. this element is positive in the algebra A.

11



Proof: The first condition is equivalent to the equality 7' = 5*5 for some S € End™(M). Therefore,
(T, z) =Sz, Sz)y >0 for any x € M.
Let now (Tz,z) > 0 for all # € M. Then
(Tz,z) = Tz, z)* = (z,Tx) for all z € M.

The map (z,y) — (Tx,y) defines a sesquilinear form on M, therefore, by the polarization equality 1.2.5,
(Tz,y) = (x, Ty) for all  and y from M. This means by Lemma 2.1.1 that 7' € End* (M) and T' = T*. So,
T is a selfadjoint element of the algebra End* (M) and, therefore (see [17, 1.6.5]), it can be represented in
the form of a difference 7' = Ty —T_ of two elements of End* (M), Ty > 0,7_ > 0and T4 T =TT} = 0.
Then (T_y,y) < {(T}y,y) for any y € M. In particular,

(TP, x) = (T2, T_x) < (T4 T_z,T_x) = 0.

On the other hand, T_ > 0 and T3 > 0, therefore (T2 z,2) > 0 (as the statement in this direcrtion is
already proved). So, we have the unique possibility: (T2z,z) = 0 for any z € M. By the polarization
equality, this implies (T3 xz,y) = 0 for all z and y from M, and T2 = 0, T_ = 0. Hence, T =T} > 0. O

Theorem 2.1.4 ([52]) Let M and N be Hilbert A-modules, T : M——N be a linear map. Then the
following conditions are equivalent:

(i) the operator T is bounded and A-linear, i.e. T(x-a) =Tz -a forallx € M, a € A;

(i) there exists a constant K > 0 such that for all x € M the operator inequality (Tx,Tx) < K{x,x)
holds.

Proof: To obtain the second statement from the first one, let us assume that T'(x - @) = T - a and
[|T]] < 1.1If C*-algebra A does not contain a unit, then we the consider modules M and A as modules
over C*-algebra A%, obtained from A by unitizaton. For £ € M and n € N let us put

1\ -1/2
an:<<x,x>—|——) , R e

n

Then (z,, 2,) = al{x, x)a, = <x,x>(<x,x> + %)_1 < 1, therefore, ||z,|| < 1, hence ||Txy|| < 1. Then for
all n € N the operator inequality (Tz,, Tz,) < 1 is valid. But

n

1
(T, Tz) = a; (Te,, Tep)a,t < a;?=(x,x)+ - (1)

Passing in the inequality (1) to the limit n — oo, we obtain (Tx, Tz) < (z, ).

To derive the first statement from the second one we assume that for all x € M the inequality
(Te, Tz) < {x,z) is fulfilled. Tt obviously follows from it that the operator T is bounded, ||T|| < 1. Let
r €M, yecN. Let us define a map r : At — AT by the equality

r(a) = {y,T(z - a)).

(T(x-a),y)(y, T(z - a) < |y’ (T2 a), T(x-a)) <[yl (x - a,2-a) = |yl " (2, 2)a

2 2
lylI” [|=[|” a”a.

%
.
B
=

*
.
.
B
=
Il

IN

To complete the proof we use the following statement.

Lemma 2.1.5 ([28, 52]) Let A be a unital C*-algebra let r : A—> A be a linear map such that for some
constant K > 0 the inequality r(a)*r(a) < Ka*a is fulfilled for all a € A. Then r(a) = r(1)a for all
aeA. O
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Therefore, r(a) = r(1)a, i.e.
(y, T(x-a)) ={y, Te)a = {y, Tx - a)

for all y € N, € M. This implies the statement of the theorem. O

Corollary 2.1.6 Let M, N be Hilbert A-modules, T' € End s (M, N). Then
|7 = mf{[xl/z {Tx,Te) < K{z,z) Ve € /\/l} a

Example 2.1.7 Let M = N & £ be a decomposition into an orthogonal direct sum of Hilbert modules.
We define an operator P : M—+M as the operator of projection onto a submodule A along the module
L. Then P is bounded, [|P|| = 1, and P* = P, therefore P € End’ (M).

2.2 Compact operators in Hilbert module

Let M, N be Hilbert A-modules, z € N, y € M. Let us define an action of an operator 0, , : M—N
on an element z € M by the formula
bz y(2) = 2{y, 2). (2)

The operators of the form (2) are called elementary operators. They obviously satisfy the equalities
(1) (Br)" = Oy’
(ii) Oy yOuv = Op(y ) = o v(u,y) for ue M, veN;
(iii) 70,y = 07y, for T € Homy (N, £);
(iv) 0y 4yS = 0y g4y for S € Hom’ (£, M).

We denote the closed linear span of the set of all elementary operators by K(M,N). The elements of
K(M,N) we shall call compact operators. In the case N/ = M the equalities (i)—(iv) mean that the
algebra K (M) = K(M, M) is a closed two-sided ideal in the C*-algebra End? M). Compact operators
acting on Hilbert modules are not compact operators in the usual sence one considers them as operators
from one Banach space to another. However, they are a natural generalization of compact operators on
a Hilbert space.

Proposition 2.2.1 Let H, be the standard Hilbert module over a unital C*-algebra A, L,(A) C Ha be
free submodule generated by the first n basis elements. An operator K € End’y(Ha) ts compact if and
only if norms of restrictions of the operator K onto orthogonal complements to submodules Ly (A) tend
to zero.

Proof: Let us denote by P, the projection in H4 onto the submodule L, (A)*. Then for any z L L, (A)
we have

160y (° = [Oey (=), oy (NI = [ 2) (e 2y, )
< 2l 1w I = el I1{Pay, = >||
S ] 17 |

Since ||P,y|| tends to zero, the same is true for the norm of the restriction of the operator 6, , to the
submodule L, (A)L and, therefore, for norm of any compact operator. Let us assume now that for some
operator K ||K|Ln A)J_” — 0 holds. Then, since Y _, Kep(em,z) = 0 for any zLL,(A), we have for
[|2]] <1 and zJ_LnE

Kz — Z Kem{em,z)

m=1

sup =sup||Kz|| —0 (3)

asn — oo. If z € L,(A) then Kz = Y " _| Kep{em,z). It means that (3) holds also if the supremum
is taken over the unit ball of the whole module H 4, therefore the operator K is a norm limit of the
operators K, = Z;Z:l Oken e, O
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Let us remark that in the case of modules over C*-algebras without unit the statement of 2.2.1 is not
valid.

We denote the C*-algebra of compact operators of separable Hilbert space H by K. Since the algebra
K is nuclear [37], there is the unique C*-seminorm on the algebraic tensor product of K by any C*-algebra
A, and we denote by K& A the completion with respect to this seminorm. We denote by M,, (4) = M, ® A
the C*-algebra of all nxn-matrices over A.

Proposition 2.2.2 There exist the following natural isometric isomorphisms
(i) K(4) = A;
(i) K(Ln(A)) = My (A);
(i) K(Ha) =K@ A.

Proof: If a C*-algebra is unital then the statement (i) is obvious. In the general case we consider a map
@ Spang(ap @ a,b € A)— A, defined by the formula

¥ (Zn: /\iga,,b,) = i /\iaib;‘.
i=1 i=1

Let us verify that this map is well-defined: if >, \ifla, b, = 3, p1j0c; a;, then 37 Nia;bie = >, pje;die
for any « € A, therefore, >, A;ja; b} = Zj pjcjd;. The map ¢ is multiplicative and involutive:

*

P(0ap Oc,a) = (Oabr der) = p(Oap)p(c,a);  @(054) = ¢(0ba) = ©(0ap)™

Surjectivity of ¢ follows from the possibility of representation a = u(a*a)'/* for any a € A (see 1.1.5). If
(ug), @ € A, is an approximate unit of the algebra A then

Zn:/\lﬂa“bl(ua) Zn:/\lalbr
i=1 i=1

therefore ||p(k)|| < ||k|| for &k = >_¢_; Xifa, v, It means that the map ¢ can be extended by continuity up
to a map from the whole algebra K (A). The inequality
SD (Z Aiga“bl) H
i=1

iAigazybz i/\zazbr
i=1 i=1

shows that the map ¢ is an isometry, so the statement (i) is proved. The statement (ii) can be proved
similarly with the use of the map

bl

lim
o

o0
= sup =
llwll<1

<

*
/\Zazbl xr
1

i=

ale alb;

n 00,0 @an,br@@b, — : :
anby ... anbl

Finally, as the isometric map from the linear space U,K(Ly(A)) to the linear space U, M, (A) is defined,
and as these spaces are dense in C*-algebras KX(H4) and K ® A respectively, so we obtain the statement
(ii). O

Lemma 2.2.3 Let x € M be an arbitrary element. Then there exists z € M and k = 6, , € K(M) such

that v = kz.

Proof: Let us put

e e 1 1/3y—1
u._v._z._gl_%x(g—l—(x,@ )7
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As s?(¢ + s)~! is uniformly convergent to s on bounded sets, so in order to prove that u is well-defined
we should remark that for ¢ = (z, z) one has

(@ (4 (2, ) P) 7 = (ut (2, )P 2 (e 4 (o, e) ) = (et (e, 0) )7
= [(e+ 7270 = (u+ 2T (e + 4127 = (u 1) 7
— [(6+t1/3)_1 _ (/J —|—t1/3)_1]2(t1/3)4.
The same argument shows that x = kz. O

Remark that we have also proved that M(M, M) = M.

Theorem 2.2.4 A Hilbert A-module M is countably generated if and only if the C*-algebra K (M) is
o-ubital.

Proof: Let the algebra X (M) be o-unital and 2, be a countable approximate unit for it. Then

r = lim s,z for any x € M. (4)
n—r 00
Really, by Lemma 2.2.3, © = kz holds for some k € K(M), z € M. As a2,k — k with respect to the
norm, S0 ®&,x = &, kz — kz = x.
By definition, any compact operator is close to a linear combination of elementary ones. Hence, for
each @, there exist elements #} and y! from M such that

s(n) 1
Zﬁxnyyn—aen < —, n=1,2,....
i=1
Let us show that the countable set 7, ¢ =1,...,s(n), n = 1,2,..., generates the module M. Let us
consider an arbitrary element # € M and arbitrary small ¢ > 0. By (4) we can find n so big that
1

g
||l‘—%nl‘||<§ u g<§

Then
s(n) s(n)
w =Y @l -y a)| < llo— @a(@)]| + ||oon (@) = Y O yo (@) <

i=1 i=1

6—|—6_6
2—.

[\]

Let now a module M be countably generated. It can be considered as a module over the algebra AT
obtained by unitization of A (if it was not unital) with respect to the action - (a, ) := z-a+ px, € M,
a € Aup € C.If it was countably generated over A then it should be countably generated over AT
too. Since in the definition of elementary compact operators only the A-inner product is involved, then
Ka(M) = K 4+(M). Thus we can restrict ourselves to the case of unital algebra A.

So, M is a countably generated module over the unital algebra A. By the Kasparov stabilization
theorem M @ Hy = Ha. Let « : M — Hy be the corresponding inclusion and 7 : H4 — M be the
corresponding selfajoint projection. Let {e;} be the standard basis of H 4. Remind that for a C*-algebra
the property of being o-unital is equivalent to that of having a strictly positive element. Let us consider

%]
genyen
x = s
n
n=1

or in a matrix form L1
=di 1,—,=...).
® iag (1, 53 )
Then = is a strictly positive element in X(H ). Indeed, on the one hand, by Proposition 2.2.1 we have
s € K(Ha). On the other hand, if p : K(H4) — C is a state such that p(ee) = 0, then p(6, ., ) = 0 for

any n, since all ., ., > 0. Then for any « = (21,22,...) € Ha

*
(o] (o] (o]
(Oc, olpe,) = 0 0 = 0 0
Ple, 2V e, P €n,€;T; €n,€;jT; P enei€i %, eix;
] ] j=1

j=1 j=1
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(o) (o) (o)
=/r Z Ocisciwilcivien | =P den'(eﬂjyej%),en < [J]|? prenven) =0,
j=1 j=1 j=1

since the last inequality follows from

<9€n~(€jxj,€jxj),€n(z)’Z> = <6n ) <ejxj’ejxj><en’z>’z> = <Z’en>$;$j<en’z> < ||x||2<98n78nz’z>'

Thus for any z, y and z from M,

Ouy(2) = 2 - (y,2) = Os e, 0c,,4(2)

and
|p(6x,y)| = |p(6@'yen6€n7y)| S pl/z(gxyengenyx) pl/z(genyygyyen) = 0’

as the second multiplicand vanishes. So p vanishes on a dense subset, consequently everywhere on K(H 4).
We have shown that 2 is a strictly positive element of X (H,). Then &, := a&'/™ is a countable approxi-
mate unit of X (H,), and mae,¢ is a countable approximate unit of K(M). Indeed, if k € K(M), mek = k,
then tkm € K(H,4) and

[|k — meent|| = ||7(chm — 2en)e]| = ||thm — een|| — O (n — o0). a

2.3 Complemented submodules and projections in Hilbert C*-modules

Let us remind that a closed submodule A of Hilbert C*-module M is called orthogonally complemented,
if M = N@NL. As we have already seen, a closed submodule of Hilbert C*-module can be orthogonally
uncomplemented.

Definition 2.3.1 A closed submodule A of Hilbert C*-module M is called (topologically) complemented,
if there exists a closed submodule £ in M such that N+ £ = M, N N L = {0}.

The following example shows that there exist topologically complemented but orthogonally uncom-
plemented submodules.

Example 2.3.2 Let J C A be an ideal such that the equality Ja = 0, a € A, implies @ = 0. Let us put
M=AdJ,
N={(b0b):beJ}.
Then
Nt ={(¢c,=¢):c€J}.
Therefore, N ® N+ = J @ J # M. However, the submodule £ = {(a,0) : a € A} C M is a topological
complement to A in M.

We denote non-ortogonal direct sum of Hilbert modules by N&L. A decomposition in a direct sum
M = N@L allows to define a projection P onto N along £. The operator P is A-linear and, by the
closed graph theorem, is bounded, therefore P € End4(M). However, as it is clesr from Example 2.3.2,
the projection P can not admit an adjoint. But if M = AN & £, then the corresponding projection is
selfadjoint, P € End’ (M). Since it is more convenient to work with orthogonal decompositions, we would
like to know, when such decomposition exists.

Theorem 2.3.3 ([46]) Let M, N be Hilbert A-modules, T € Hom’ (M, N') is an operator with closed
wmage. Then

(i) Ker T is an orthogonally complemented submodule in M,

(ii) Im T is an orthogonally complemented submodule in N .

Proof: (i) Let ImT = Ay and let Ty : M—Ny be an operator such that its action coincides with the
action of T'. By the open mapping theorem, the image of the unit ball of Ty(B;(M)) contains some ball
of radius § > 0 in Ny. Therefore, for each y € Nj it is possible to find £ € M such that Tyx = y and
llzf] < o= [Jyl]-

* 2 * *
IZ5ull” = Ky, ToZ5 )l < llyll - (TG vl
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and hence,
2 " " - 1/2 . (1/2
il = [KToz, vl = 1, Tyl < llell - (759l < 0 Iyl - 1l > 11 ToT5 il

We obtain, that for any y € Ny
lyll <6~ |1 To T3yl -

Let us show that the spectrum of the operator Ty Ty does not contain the origin. Suppose the opposite,
i.e. that 0 € Sp(TpT7). Let f be a continuous function on R such that

FO =1=00, S0 =0 mpu ] > 55

Using functional calculus in the C*-algebra End’ (M), we define the operator S € End% (M) by the
equality S = f(ToT7). Then ||S|| =1 and ||ToT5 S]] < %(5‘2. We can choose an element @ € M such that
||lz|| = 1, [|Sz|| > %. Then

1
IToT5 Sl < 5077 < 57 1Sl

is a contradiction to the supposition (with y = Sz). So 0 ¢ Sp(Ty7y), therefore the operator TpTy is
invertible, and, in particular, surjective. For any z € M it is possible to find an element w € Ny such
that Toz = TyT w. Then z — Tiw € Ker T and

z=(z—-Tiw)+Tjw € Ker T 4+ ImTj.

Since the module Im 7 is obviously orthogonal to Ker 7' it is a complement of Ker 7| that completes
the proof of (i).

(i) Since M = Ker T & Im T}, the submodule Tm T is closed. Let us remark that Im 77 = Im 7™,
therefore it is possible to apply the proof of (i) to the case of the operator T~ instead of 7', and it gives
the orthogonal decomposition N = Ker T* ¢ Im7T. O

Corollary 2.3.4 If P € End’ (M) is an idempotent, then its image Im P is an orthogonally comple-
mented submodule in M. O

Corollary 2.3.5 Let M, N be Hilbert A-modules, F : M — N be a topologically injective A-
homomorphism (i.e. ||Fx| > d||z|| for some § > 0 and for all € M) admitting an adjoint operator,
then F(M)® F(M)* =N. O

Corollary 2.3.6 Let M be a Hilbert A-module, J : M — M be a selfadjoint topologically injective
A-homomorphism. Then J is an isomorphism. 0O

Lemma 2.3.7 ([46]) Let M be a finitely generated Hilbert submodule in a Hilbert module N over a unital
C*-algebra. Then M is an orthogonal direct summand in N

Proof: Let z1,...,z, € M be a finite set of generators. Let us define an operator F : L, (A)—N by
the formula F(e;) = #;, where e; € L,(A) is the standard basis, ¢ = 1,...,n. It is easy to see that the
operator F' admits the adjoint F* : N—=L, (A) acting by the formula F*(z) = ({z1,2),...,(zn, 1)),
where € . By Theorem 2.3.3 the module Im F' = M is an orthogonal direct summand. O

Lemma 2.3.8 Let A be a unital C*-algebra and let Hy = MON, p: Hy — M be a projection, N be
a projective module. Then H, = M & M* if and only if p admits an adjoint.

Proof: If there exists p*, then (1 —p)* = 1 — p* exists too. Therefore, by Theorem 2.3.3 Ker(1 —p) = M
is the image of a selfadjoint projection.

To prove the converse, let us verify at first, that H4 = N+ + M*. By the Kasparov stabiliza-
tion theorem, it is possible to suppose without loss of generality, that ' = span,{ei, ..., e,), N1 =
span 4 {€n41,€nt2,---). Let g; be the images of e; under the projection N onto M*:

61:f1+g1a"'aen:fn+gna fZEMagZEMJ_
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Since the projection realizes an isomorphism of A-modules " = M* | the elements g1, ..., g, are free
generators and (gx, gx) > 04. So, if

fr = fiei, then ex—fiey =" fiei+gr.
i=1 i£k
On the other hand,
i.e. the spectrum is separated from the origin. Then the element 1 — f,ff is invertible in A,

1 ,
ek = ——& Zf,iei—l—gk ENt 4+ MY (k=1,...,n),
1= i2k

and, therefore Nt + ML
form y = m + n, then {(z,y)

Hy. Let 2 € Nt n ML, Since any element y € Hy = M®N has the
(x,m) + (x,n) = 0; in particular, (x, #) = 0 and, therefore £ = 0. Thus
1 on Nt
0 on M*
since Hy = NYOM?L. Let 2 +y € MEN, 21 +y1 € NEEML. Then

Hjp = NtEML . Let us consider the following map ¢ = { , which is a bounded projection,

P +y), e+ )= (x, 21 +y1) = (&, 1),
x4y, q(x1+ 1) ={(z+yz)={(x,z1).

Therefore, there exists p* =¢. 0O

2.4 Full Hilbert C*-modules

Let M be a Hilbert A-module . We denote by (M, M) € A the closure of the linear span of the elements
of the form {x, z), # € M. It is obvious, that the set (M, M) is a closed two-sided involutive ideal in the
C*-algebra A.

Definition 2.4.1 A Hilbert A-module is called full, if (M, M) = A.

It is possible to consider any Hilbert module as a full Hilbert module over the C*-algebra (M, M).
The following statement gives an example showing that this is a useful notion.

Theorem 2.4.2 ([38, 20]) Let A be a o-unital C*-algebra, M be a full Hilbert A-module. Then

(i) there exists a Hilbert A-module N such that l3(M) = Ha @& N. If a C*-algebra A is unital, then
there exists a number n and a Hilbert A-module N’ such that M@ ... M = M= AP N';

(i) of the module M is countably generated then lo(M) = Hy.

Proof: Let us consider the following set

k
S:{CEA:||C||§1,c:Z<xi,xi>,kEN,xiEM}.

i=1
For the proof of the theorem two following lemmas will be necessary.
Lemma 2.4.3 ([13]) For anya € A, a > 0, and any € > 0 there exists ¢ € S such that ||(1 — c)a|| < .

Proof: Since the module M is full, it is possible to find a finite set of elements y; € M such that

k
a—>> (vi,w)
i=1

<ef2. (5)
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Let us put

k k k
Z y]’y] 1/2’ Zzlaaka Z Lg, T Z ) Z ylayl
j=1 i=1 i=1

Then ||c|| = ||(62 + b)Y 2h(e + b)_l/ZH < 1, therefore ¢ € S. Let f(t) := e*t?(¢? + ¢)=2. Applying this
function to the element b, we obtain the estimate
IF )] = [|e*0(e* + b) 77| = ||e*(e® + b) 7' 67> (* + b) 71| = ||(1 — )b (1 — o) | =< % /4.

Therefore, ||(1 — ¢)b|| < £/2, and together with the estimate (5) it proves the lemma. O

Lemma 2.4.4 ([13]) In the module M there exists a sequence (x;), ©; € M, such that the sequence of
partial sums of the series Zle (i, 2;) is a countable approrimate unit of the algebra A. If is unital then
there erists a finite number k and elements x1, ...,z € M such that ZZ 1 (@, 5) = 1.

Proof: We shall consider at first the case of a unital C*-algebra. Then by Lemma 2.4.3 it is possible to
find an element ¢ € S such that ||1 — ¢|| < 1/2. Therefore the element ¢ is invertible and ¢ = Zle (Yi, y5)

for some k and y; € M. By putting z; = y; cem1? we get Z?:l (25,2;) = 1.
In the case of a C*-algebra without unit let 4 € A be a strictly positive element. By induction we
shall construct a sequence (¢;) in S such that

k k 1
Z <1 I—ZC] h <2_k'
j=1 j=1

By Lemma 2.4.3 we can find an element ¢; € S such that ||(1 — ¢e1)h|] < % Under assumption that the
elements ¢y, ..., ¢; are already found, by Lemma 2.4.3 we can find an element d € S such that

(1—d) (1 _ zk:cj)l/zh < 2,}“ (6)

and let us put

k 1/2 k 1/2
Ck+1 = (1_ch) d(l—ZCj) .

j=1 j=1

Since < 1and d € S, we have ¢41 € S. Since ||d]| < 1, ¢p41 < 1 — Z?:l ¢;, then

(-550)”

Zf;l ¢; < 1. Finally, it follows from the inequality (6) that

k41 k 1/2 k 1/2
(1—ch)h = (1—ch) (1—d)<1—zcj) h
j=1 j=1 j=1
k 1/2 k 1/2 1
< (1—ch) (1—d)<1—2cj) b < e
j=1 j=1

that completes the step of induction. So we obtain that
k
(1 -3 cj) h|| —0
j=1

as k — oo. Since the strictly positive element h generates the whole C*-algebra A [55], the lemma is
proved. O
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Let us continue the proof of the theorem. By Lemma 2.4.4 we can choose a sequence (z;) in the

module M such that the partial sums of Z?:l (24, 2;) form an approximate unit in A. Define a map
T : A—l3(M) by the equality

T(a) = (z1a,...,v5a,...), a€ A (7)

As the series (T'a, T'a) = Y ;2 a*(z;, x;)a = a*a converges uniformly in A, so T'(a) € I>(M). Moreover,
the adjoint operator is well-defined, T* : ls(M)—A, T*(y;) = > i, (zi, yi) € A for (y;) € l2(M). Since

i=1
T*T acts identically on A, the operator T' is an isometry, and
LM)=ImT P Ker T" = AP N,

where N/ = Ker 7*. This finishes the proof of statement (i) of the theorem for the case of a C*-algebra
without unit. In the case of a unital C*-algebra the previous reasonings can be applied literally if we
replace the module l5(M) by M* and replace infinite sequence in (7) by a finite one.

We pass to the proof of the statement (ii). For this purpose let us renumber the sequences in the
module [3(M) with the help of a bijection N—N x N. Then elements of the module {3(M) are realised
as sequences (m;;), m;; € M and for each i € N the set of sequences (m;;),j € N, is isomorphic to
the module l3(M). Such a renumbering defines an isomorphism I3 (M) = I5(l2(M)). By the isomorphism
I2(M) = A @ N we conclude that

Notice that the Hilbert module l2(\) is countably generated, therefore
la(M) 2 1(A) @ la(N) 2 1(4)

by the Kasparov stabilization theorem. O

2.5 Dual modules. Self-duality

For a Hilbert A-module M let us denote by M’ the set of all bounded A-linear maps from M to A. The
structure of a vector space over the field C is introduced by the formula (A- f)(z) := Af(x), where A € C,
fe M xe M. This definition seems artificial, however it is convenient, because it allows to define a
linear inclusion of the module M into M’ (there is also the alternate approach: to define M’ as the set
of all anti-linear maps from M into A). The formula

(f -a)(2) = a" f(a),

where a € A, introduces a structure of a right A-module on M’. This module is complete with respect
to the norm [|f|| = sup{||f(z)|| : ||#|| £ 1}. Such modules we shall call dual (Banach) modules. The
elements of the module M’ are called functionals on the Hilbert module M. Let us remark that there is
an obvious isometric inclusion M C M/, which is defined by the formula  — (#,-) = Z. Sometimes, if it
will not cause a confusion, we will write (f, ) instead of f(z).

Definition 2.5.1 A Hilbert module M is called self-dual if M = M'.

The condition of autoduality is very strong. Below we will see that there exist only a few self-dual
modules: each module over a C*-algebra A is self-dual iff A is finite dimensional. Auto-dual Hilbert
C*-modules behave quite like Hilbert spaces. In the same way as and in the case of Hilbert spaces, the
following statements can be obviously checked.

Proposition 2.5.2 ([52]) Let M be a self-dual Hilbert A-module, N be an arbitrary Hilbert A-module,
and T : M—N s a bounded operator, T € Homa (M, N'). Then there exists an operator T* : N— M
such that for allx € M, y € N the equality (&, T*y) = (T'z,y) is valid. O

Corollary 2.5.3 Let M be a self-dual Hilbert A-module. Then End (M) = End’(M). O

Proposition 2.5.4 Let M C N, M be a self-dual Hilbert A-module. Then N' = M & M*.
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Proof: Since M is self-dual, ¢ : M — N is an isometric inclusion, admitting an adjoint. Therefore,
M =M has an orthogonal complement by Lemma 2.3.5. O

If A is a unital C*-algebra then the Hilbert module L, (A) is obviously self-dual. For an arbitrary
module it is not true, moreover, the Banach module M’ can not admit a structure of a Hilbert module
at all. Description of the dual module for the standard Hilbert module H 4 is given by the following

Proposition 2.5.5 Let us consider the set of sequences f = (f;), f; € A, i € N, such that the norms of

[ 5 5
the action of f on elements of the module H 4 is defined by the formula

partial sums

‘ are uniformly bounded. If A is a unital C*-algebra, this set coincides with H'y,

fa) =2 fiw 8)

where x = (x;) € Hya, and the norm of f is defined by the equality

N
S Fk
i=1

Proof: Let f € H',, e; be the standard basis in H4. Let us put f; = (f(e;))*. We show that the sequence
(fi) determines a functional f in a unique way. Let us assume that there exists a functional ¢ # f,
gl(e;) = f(ei). Let us choose ® € H, such that ||f(x) — g(#)|] = C # 0. Denote by ™) the image of
under the projection onto the submodule Ly (A) C Hy, V) = Zf\;l eiw; = (x1,...,2n,0,...). Let ud
find a number N such that

)

17117 = sup
N

o 1/2

E "z

i=N+1

C

=== = < A7+ el

Since f(zV)) = g(x)), we have ||f(x — W)y —g(x — J:(N))H = (. But, on the other hand, one has

| £z = 2™ =gt == < QU1+ lgll) [ = =™ < 171+ gl 5 <cfe.

C
(IS11 =+ [lgll)
The obtained contradiction shows that f = g. The Cauchy — Bunyakovskii inequality

2

N N N
STsra < \DCFR|D wrw (10)
i=1 i=1 i=1
shows that
N
A1 < sup | > f £ (11)
N i=1
1/

2
Remark that if we take z; = f;/ ‘ Zf\;l I h , then the equality is reached in (10). Let us put f(V) =
(fi, . fn,0,..), fOV) € Ly(A) = Ly(A). Tt is obvious that

11 > Hf(N)H. (12)

But ||f(N) ||2 = HZf\;l I le, therefore (9) follows from (11) and (12). The convergence of the series (8)

follows from the fact, that for any € > 0 it is possible to find a number N such that for all n > 0 the
following estimate holds

N+4n N+4n N+n N+n
SoFrw| <\ D0 R DD wred < WP DS wra| <lIfPe. O
i=N i=N i=N i=N
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Remark that for the functional f = (;) from Example 2.1.2 the partial sums Zf\;l ¥, are uniformly
bounded, however the appropriate series is not convergent.

Let us describe an interesting example of a dual module.
Example 2.5.6  [23] Let A = B(H) be the algebra of all bounded operators on a separable Hilbert
space H. Let us consider pairwise orthogonal projections p; € A, i € N such that the series ), p;
converges w¥-weakly to 1 € A, and each projection p; is equivalent to 1. We can consider H = &, H; as
an orthogonal sum of Hilbert spaces isomorphic to H, u; : H — H; being isometries, so that

*

_ _ *
D = U, 1= uju;.

As it was shown above (see Proposition 2.5.5),

N
a; € A1 € N, sup ||Zaia;‘|| < 00
NEN i=1
is an A-Hilbert module with respect to the inner product

<ﬂu}{@b::iﬁ4hﬂ§:aM?

Io(A) = {{ai}

The maps
S A= (AY, S:tarma-{u},

STl (AY — A, St {a;} w*—limz a;u;

define an isometric isomorphism of A and lo(A)’.

Let ¢ be a positive linear functional on A. If M is a Hilbert A-module and if N, = {z € M :
o({x,z)) = 0} is its linear subspace, then M/N,, is a pre-Hilbert space with the inner product (-, ),
given by the formula

(& + Nosy + No)o = p((2,9), ©,yeM.

The norm defined by this scalar product we denote by H'Hw’ and the Hilbert space, obtained by completion
of M /N, with respect to this norm, we denote by H,. Let f € M’. In accordance with Proposition 2.1.4

we have for all x € M )
@) fla) < IfI17 (2, @),

therefore, if x € N, then
p(f(2)" f(z)) =0 =p(f(z)).
Hence, the map

z 4+ Ny — o(f(2)) (13)

defines a linear functional on M /N,. Since

e (FD] < el o(F @) F@) 2 < el (171 oG, )2 = (el 1A e + N,

the functional (13) is bounded. Then there exists a unique vector f, € H,, such that ||f¢||w < |\I£Nl ||g0||1/2

and (f,, 2+ Ny)p = @(f(2)) for all € M. For © € M we shall denote by ¥ the functional (z,-) € M.
Let us remark that 3, = y + N, for all y € M.

Let ¢ be another positive linear functional on A such that ¢ < ¢. Then N, C Ny and the natural
map z + N, — x + Ny can be extended to the map

Vot Ho—>Hy, Ve ull < 1.

It is easy to see that V,, 4(Z,) = Ty. It appears that the same holds for all functionals on M'.

Proposition 2.5.7 Let M be a Hilbert A-module, ¢ and 1 be positive linear functionals on A and ¢ < .
Then Vi, o(fy,) = fy for any functional f € M'.
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Proof: Let f € M’. Since the quotient space M /N, is dense in H,, it is possible to choose a sequence
{yn + Ny} of the elements from M /N, such that [|y, + Ny — fol|, — 0. Then

Vu(fe) = li}}le,w(yn + Ny) = lign(yn + Ny).

To prove the statement, it is sufficient to show that ¢({yn, #)) — ¥(f(x)) for all # € M. But

¥y, ) = F(2))]* 191 (Y ) (@, 9n) = (Y, ) f (€)= f@)(2, y) + f(2) f(2)7)
el - (Y ) (s yn) = (s ) ()" = f2) (2, yn) + () f(2)7)

INIA

for each n € N. Since

((yn, 2)f (2)7) = e((yn, x - (f(2))7)) = o(f(x - (f(2))7) = o(f(2)f(2)7),
it will be sufficient to show, that o((yn, ){x, yn) — f(2){(x, yn)) — 0. Notice that

((Yns ) (@, yn) = F@) (@ yn) = o((Yn, 2 (@, yn)) = F(@ - (2, 9n)))
= (yn + NLP - fw’$ : <x,yn> + NAP)W

and the sequence {z - (z,y,) + Ny} is norm bounded with respect to the norm ||||w Indeed,

(2 ) + Nolly, = (2 (@, 9n), (2 (@, 90)) = ©((vns 2)@, 2)(2, )
2017 (g, ) yn)) < Nl ol (s ynd) = 12l g + Nl

IN

and the sequence {y, + N,} is bounded. Since ||y, + N, — f¢||w — 0, the statement is proved. O

2.6 Banach-compact operators

Definition 2.6.1 Let M, N be Hilbert A-modules, M’ be the dual module. Consider the closure
BK (M, N) in the Banach space Homa (M, A) of the linear span of operators of the form

Oy ;(x) =y f(z),
where # € M, y € N, f € M'. The elements of the set BK(M,N) we call Banach-compact operators.

In the case N' = M the set BK(M, N) is equipped with a natural structure of a Banach algebra. If
T € Enda (M) is an operator, generally speaking, not admitting an adjoint, then the equalities
Oy jTe =y [(Te) = Oy ror(x), Ty j(x)=Ty- f(x) =bry;(2)
show that BK(M) is a two-sided ideal in the Banach algebra End 4 (M).

In the case of the standard Hilbert module over a unital C'*-algebra we shall give one more description
of compact and Banach-compact operators, a geometric one. Let S C Ha be a bounded set. We shall
name it A-pre-compact, if for each ¢ > 0 there exists a free finitely generated A-module N' = L, (A);
N C H, such that dist(S, V) < e.

Proposition 2.6.2 Let T' € Enda(Ha) (resp. T € End’y(H4)). Then the following conditions are equiv-
alent:

(1) T € BK(Hy) (resp., T € K(Ha));
(i) the image T(B1(H4)) of the unit ball B1(H ) is A-pre-compact.

Proof: If the statement (i) holds, it is sufficient to prove that it is possible to find an approximating
module N 2 L, (A) for a finite set of the elements from H,4 and it can be easily done by the Dupré
— Fillmore method, as in the proof of Theorem 1.4.4. So suppose that (ii) is carried out. Then for any
¢ > 0 it is possible to find elements b1,...,b; € H4 such that (b;,b;) = d;;, which generate the module
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N C Hyp and dist(T(B1(Ha)), N) < €, where By(H4) is the unit ball of the module H 4. Let us denote
by Py the projection onto A" and let us consider the operator PyT. It can be decomposed as

PyTx = bi(fi,x) + -+ bu(fn, ®) (14)
where f; € H',. Since € B1(H 4), we can find an element b € A such that ||T2 — b|| < ¢, therefore
[T = PATe]| = [T — b4+ b — PuTal| = [T = W]+ [ Pac(b—Ta)| <= + [Pyl e =22, (15)

therefore ||T'— PyT|| < 2¢ and T lies in the norm closure of the set of operators of the form (14). If T'
admits an adjoint then PyxT admits an adjoint too, hence f; € H4 and T is compact. O

2.7 (*-Fredholm operators. Index

The material of this section is taken mainly from [48]. Let us remind in the beginning the definition of
K-groups.

Definition 2.7.1  [31, § IT.1] Let M be an Abelian monoid. Let us consider the direct product M x M
and its quotient-monoid with respect to the following equivalence relation

/

(m,n) ~ (m',n') < Ip,q: (m,n)+ (p,p) = (M, n") + (q,9).

This quotient monoid is a group, denoted by S(M) and is called the symmetrization of M. Let us consider
now the additive category P(A) of projective modules over a unital C*-algebra A and let us denote by [E]
the isomorphism class of an object M from P(A), then the set ®(P(A)) of these classes has a structure of
an Abelian monoid with respect to the operation [M]+[N] = [M&N]. In this case the group S(®(P(A)))
is denoted by K(A) or Kg(A) and is called the K-group of A or the Grothendeick group of the category
P(A). If A has no unit then the natural map AT — C induces a map of K-groups and let us put

Ko(A) := Ker(Kq (A1) — Kq(C)).

The groups K,(A) := Ko(A® Cy(R™)) for natural n appear to be 2-periodic in n, and the definition can
be extended to n € Z by periodicity.

For unital algebras we could use classes of stable (after adding direct summand) homotopy of projec-
tions in A" instead of classes of isomorphic projective modules. More precisely, projections p : A® — A"
and ¢ : A™ — A™ are equivalent, if there can be found m’ and n’ such that n +n’ = m+ m’ = s and

projections
p 0 q 0
0 0 0 0

AS :AH@AHI H An @Anl :AS’ AS:Am @Aml H Am @Aml :AS

can be connected by a norm continuous homotopy in the set of projectors from End(A®) = End”(4*)
(A unital!). Tt is possible to consider also equivalence classes of projections in the algebraic sense. The
details can be found in [9, 31, 50, 72].

Let us remind the following well known statement.

Lemma 2.7.2 (compare [59, Theorem 4.15]) The set of epimorphisms is open in the space of bounded
linear maps of a Banach space E to a Banach space (.

Lemma 2.7.3 [48,1.4] Let N be a finitely generated A-module over a unital A, ay, .. .as be its generators.

Then there exists a number ¢ > 0 such that if for some elements a!,...a’, € N the following inequalities
hold

|af, — ax|| < e, (k=1,...9)
then the elements a,...a), also generate N .

Proof: The map
F:Ls(A) = N, 0,...,0,1,0,...,0) — a;
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is an epimorphism. Hence, by Lemma 2.7.2, there exists ¢ > 0 such that if ||g — f|| < se, then g is an
epimorphism. Let

g:Ls(A) = N, 0,...,0,1,0,...,0) = af,

Then for any o = (a1, ..., a5) € Li(A) with norm ||o|| < 1

B3
g = Fell = Z(ag —a;)o; || < se.
i=1
Hence g is an epimorphism and the elements aj, ...a’s generate N'. O

In this section we assume that the algebra A is unital. Let us remind the definition of a Fredholm
operator [48].
Definition 2.7.4 A bounded A-operator F': Ha — H 4, is called Fredholm, if

(i) operator F' admits an adjoint;

(i) there exists a decompositions of domain Hgq = M{@®N, and range Hy = Mo®N (where
My, Mo, N1, Ny are closed A-modules, Ny, Ny have finite number of generators), such that the
o0

0 F ) with respect to these decompositions,
2

operator F' has the following matrix form F' = (
where F; : My — M5 i1s an isomorphism.

Theorem 2.7.5 [48] Let Hy = MON, where M and N are closed A-modules, N has finite number of
generators ay, ...,as. Then N is a projective A-module of finite type.

Proof: By Lemma 2.7.3 there exists € > 0 such that if
lap —al| <e, a, €N, k=1,...s,

then {a,} generate N. Let P : Hy — N is the projection along the summand M in the module H4.
Then P is a bounded A-operator. Therefore there exists § > 0 such that if [||| < § then ||Px|| < ¢. Let
us choose a number ng such that

[|lar — @k|| < 9, k=1,...,s,
where @ is the projection of a; onto L,, along L,J;D. Let us represent a; in the correspondence with the
decomposition Hy = MON as
ar =a,+ay, a, €N, afeM.
Then ag —aj, = P(ay—ax). Therefore ||ay —a}|| < € and {a} } generate N. Let N be the module generated
by {@}. Then H, is equal to the sum M + A. Indeed, if z € H,4 then

rT=2am —|—sz\ka//lc = (zm —Zx\kag) —|—Zx\kﬁk.

Let us consider the bounded A-operator @ of projection onto L, along LrJ{D~ Then

Q(ax) = @y, QN) =N,
P(ay) = aj, PN)=N.

Since ay are close to aj, the composition of A-operators
— P
N LTI N
1s an A-isomorphism. Therefore QN —- Nand P: N — N are A-isomorphisms. In particular, if

Z Araj, = 0 holds then Z As@x = 0. Therefore MNN =0,1.e. Hy = M&N. It is clear, that A is a
k=1 k=1
closed A-submodule in H4 and

Ly = (M N Ly, )JON.
_Indeed, (M N Ly,) NN = 0; on the other hand, if « € Ly, then z = 2’ + 2", &' € N, " € M. Since
N C Ly, then & € L,,, 1. e. 2” € M N Ly,. Thus N is isomorphic to a direct summand in the free
finitely generated A-module L,,. O
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Theorem 2.7.6 [67] In the decomposition mentioned in the definition of a Fredholm operator, (see 2.7.4)
it 1s possible to suppose always that the modules My and My are orthogonally complemented. More
precisely, there exist such decompositions for F

Fs 0 ~ -
3 T Hy = Voo Wy — VidW, = Hy,
0 Fy

that VOJ;@ Vo = Ha, V@ V) = Hya, or (which is the same by Lemma 2.3.8) that projections Vo@&Wy — Vi
and Vi®W1 — Vi admat an adjoint.

Proof: Let Wy = No, Vo = Wi . The orthogonal complement exists by Theorem 2.3.7. The restriction
F|WD¢ is an isomorphism. Indeed, if z,, € W3, then let =, = 27 + 2%, 27 € My, 2% € Wy, ||za|| = 1. Let

us assume that ||Fxz,|| — 0, then ||Fa} 4+ Fz%|| — 0; and since Fz} € My, Fzh € N7, MiGN, = Hy,
it means that ||[Fz?|| = 0 and ||F#3%|| = 0. The operator Fj is an isomorphism, therefore ||27| — 0. If

ai,...,a, are generators for Wy = Ny, then 0 = (z,, a;) = (27, a;) + (¢, a;),
(e, apll = [T, apll <l llajl] = 0, n =00, j=1,....s.
Since 2} € Ny, 25 — 0 (n — o0) and z, = 2] + 2§ — 0 — a contradiction to [|z,|| = 1. This

contradiction shows that F|WD¢ is an isomorphism.

Let Vi = F(V4). Since Wy = Ay, it is possible to suppose that W, = Aj. Indeed, any y € H 4 has the
form y = my + ny = F(mg) + ny, where my € My, ny € N1, mg € Mg. In turn, mg = vg + ng, where
vo € Vo, no € Wy = N, and

y= F(vo+ng)+n1 = F(vg) + (F(ng) + n1) € Vi + A7,

Thus Hy = V1 + Wh.
Let ye ViNnWy = ViNN, i e.np =y= F(uv), n1 €Ny, vg € V. Let us decompose vy = mg + ng,
where mg € My, ng € Ny. Then

ny = F(mo) —|— F(no),
F(mg) = ni — F(ng), F(mg) € M1, n1— F(ng) € Ny,
whence we obtain that F(mg) =0, ny— F(ng) = 0. Since F' : Mg = My, mg = 0. Further, vo € Vj =

Nt and therefore
0 = (o, no) = (mo + no, no) = (no, no), 1o = 0.

Thus vg =mg+ne =0, y = F(vg) = 0. Hence Vi NW; =0 and Hy = VidW,.
By Corollary 2.3.5 the module V; has the orthogonal complement Vi, Vi@Vt = H 4, and it completes
the proof. 0O

Remark 2.7.7 If we do not require that the operator F' is supposed to have an adjoint then it is possible
to state that there exists a decomposition F' : N @& Ny — M@ L, where L, = span (e, ..., e,), but
M does not necessarily have an orthogonal complement. This result was obtained in [27].

Definition 2.7.8 Let the conditions of Definition 2.7.4 hold. By Theorem 2.7.5, N7 and N3 are pro-
jective A-modules and we can define an index

index ' = [N1] — [N3] € K(A).
Theorem 2.7.9 The index is well-defined.

Proof: It is necessary to check out that the index does not depend on decompositions of range and
domain involved in the definition of index 2.7.4. Let p;,, be the projection onto L, along L. Let F be an
A-Fredholm operator, H4 = M{DN;| be a decomposition of domain, H4 = My@N5 be a decomposition

of range,
(B0
F= ( 0 F ) ’

where F} : M — Mo is an isomorphism. According to the proof of Theorem 2.7.5 and Theorem 2.7.6 1t
is possible to suppose that

Ny C Ly, L = N1&Py, My =P @ Ly,
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where P; is a projective finitely generated A-module. Let anther decomposition of domain and range be
given: N N
Hy = M{ON], Ha = M5DN;.
Then there exists m > n such that
L :Piépm(-/vll)’ pm(Nll) = 1/’

where P} is a projective finitely generated A-module. This is exactly the result of the proof of Theo-
rem 2.7.5.
Let us show that there exists m > n such that if

L, = F(Lm) + No, and Q. :Hjq— Hy
is the projection on L/, along L = F(L}) * then
Ly, = PaBQ, (N2),  Q(N2) 2N,
where P5 is a projective finitely generated A-module; and
Ly, = PydQn(N3), QL (N3) = NG,

where P4 is a projective finitely generated A-module. Indeed, Hy = L), &L . If a1, ..., ax are generators

of the module N5 then
aj:a}+a}/, a}EL;n, a}/EL;’l, j=1,... k.

N
m

L

For m — oo we have ||a}|| — 0, as a} = F(z;,), where z is arbitrary, x5, is a projection of z onto Lt

and ||z || = 0 for m — co. Then for big enough m we have
Ly = (L N M2)@Q, (V) @ (N2) =N,
(the proof of this fact repeats the proof of Theorem 2.7.5). Similarly
Ly, = (L, O MO)SQ, (N3), @, (N3) = NG,
Since m > n, L, = N1@P1, where Py is a finitely generated projective A-module. From the equalities
F(P1)=F(LmNMy) =Py,  P1C My,

we obtain that F : P; = Py, and it follows from relations F(P]) = P4, P; C M, that F : Pj = P},
Therefore we have the following equalities in K (A)

[N1] + [P1] = [N]] + [P1]

1 [P1] = [Ps],
[Na] + [P2] = [V3] + [Ps]

[Lm] 1
L], [P = [Pa]-

[L5:]
Thus [N1] — [Ns] = [N]] — [V]] and we have proved that index is well-defined. O

bl
bl

Lemma 2.7.10 Let an operator F' : Hy — H4 be A-Fredholm. Then there exists a number ¢ > 0 such
that any bounded A-operator D satisfying the condition ||F — D|| < ¢ and admitting an adjoint is an
A-Fredholm operator and index D = index F'.

Proof: By the definition of the Fredholm property

Ha=Mi@N,  Ha= MaBN3, Fz(lz1 F04)

Lthis projection is well-defined, since L,J;l C M, for m > n and hence F|; . is an isomorphism; whence it follows that

L =~ H, is a closed A-module, L! N LY =0, L' + L = H,; therefore Hy = L;néLxl is a direct sum of closed
A-modules and Q! is a bounded A-operator
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Fy: My = M. Then ||Fy|| < ||F||; moreover, if D : Hy — Hy is an arbitrary bounded A-operator, then
[ Dy Dy
=(5 )
then there exists a constant C' such that ||D1|| < C||D|| (cf. [48, p. 842]). Therefore, if D is an arbitrary
A-operator satisfying the estimate | — D|| < ¢ then ||} — Dy|| < C - £. Since Fj is an isomorphism, we

can find § > 0 such that if ||} — D1|| < § and D; is an A-operator then D; is also an A-isomorphism.
By putting ¢ = §/C we obtain that for the operator

_{ D1 D
o= (5 o)
the element Dy is an isomorphism. Then

(D 0
U2 DUy = ( 0 Dy—D3D7'Dy )

where

1 ~ ~
Uy = ( _ _1 2 ) D (MaBNs) — (MaBNy),

—1
U, = ( 1 _Dl D ) Z(./\/llé./\/’l) — (Mlé./\/’l)

are A-isomorphisms. With the help of U1 and Us we obtain a new decomposition of domain and range in
direct sums

Ha= M{BN], 1=U1(My), N{=U1(M),
Ha = MYDNT, h=Us (Ma), Nj=UsH(Na).

With respect to the new decomposition the matrix of the operator D is equal to UsDU;. Thus the
operator ) is Fredholm with the index

[0 (V)] = [U5H(N2)] = [M1] = [Vs] = index F. O
Lemma 2.7.11 Let F and D be A-Fredholm operators
F:Hy— Ha, D:Hjy— Hy.
Then DF : Hy — Hy is an A-Fredholm operator and index DI = index D + index F'.

Proof: Let us consider for ' and D decompositions from the definition
Hy = MiEN, -5 MoBNy = Hy,
Hy= MEN 2 MYEN] = Hy,
(10 _( Dy 0
F‘(o F4)’ D‘(o D4)’

F; and D; are isomorphisms, N1, N2, N, NV} are projective finitely generated A-modules. As well as
earlier, without loss of generality it is possible to suppose that

where

NZCLna Ln:NzéP, MQILTJ{@'P

Moreover, as Fy : M1 — M is an 1somorphism, it is possible to change decomposition into direct sums,
by putting L o L o
My = FTHLE), Ny= FTYP)ENT, Mo =L No= Ly;

Thus a number n can be choosen as big as necessary. Let us choose n in such a way that

L = P'$pa(N]), P =M\NL,, pa(N]) = N,
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where, as well as earlier, p, : H4 — H 4 is the projection on L, along L. Then
Hy = Liéplépn(/\/’{)

Let us put ﬁz = L}, Tz = P'GN!. With respect to the new decomposition H4 = ﬁzéﬁz the the
matrix of the operator F' has the form
AT o
F= ( 0 F )
and Fy is an isomorphism. Then
F By 1 7' _(F0
0 Py 0 1 - 0 Fy /-

1 —FF,
0 1

a new decomposition of space Hyq = ﬁl éﬁl, and the matrix F' for decompositions

Denoting by U the matrix ( ) , let us put M = U(My), Ni= U(N1). We have obtained

HA = ﬁléﬁl i) ﬁzéﬁz =H
has the former diagonal form. Let us consider the projection
T HA = ﬁzéplé/\/’{ — ﬁzépl.

Since H4 = MALDNT, the restriction Tlpy 2 My — MoEP' is an isomorphism. Let us consider the
matrix D with respect to the decomposition
= (Mo@P)aN! 25 MLEN, =
Dy 0

D3 Da

VD'_<—D3D1_1 1)(1)3 D4)_< 0 D4)'

Therefore it is possible to change decomposition in the range

oP
This matrix has the form D = ( ) where Dy is an isomorphism. Let us put

Hy=M4YBNY,  My=V(My),  Ny=V(N),
in such a way that the matrix of the operator D with respect to the new decomposition
Hy= M4SN, My=V(My),  Ny=V(N),

has diagonal form. Let us change decomposition in the range once again:
= D(M,), Ny=DP)EN.
The matrix D with the respect to the new decomposition
Hyp = MyGNy 2 ﬁgéﬁ’ =Hy
has the diagonal form. Then the composition DF with the respect to the decomposition
Hy=MGN, - MLEN, = Hy

has the form DF = ( (D(l:h (D(l)p) ) , and (DF'); is an isomorphism. Taking into account the fact
4

that End* H 4 is a C*-algebra, we conclude that DF is an A-Fredholm operator and
index F' = [Tl] - [Tz], index D = [Tz] - [T/Z],
index DF = [Wl] - [W'Z]
We obtain from it that index DF = index D + index F. ad
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Lemma 2.7.12 Let K : Hy — H4 be a compact operator. Then 1 + K s an A-Fredholm operator and
index (1 4+ K) = 0.

Proof: It is obvious that 1 + K admits an adjoint. Let us choose a number n such that the inequality
IK|pL|l < 1is fulfilled. With respect to the decomposition H4 = L+ @ L,, we have the following matrix

presentation:
. K1 K {1+ K; Ko
A_<K3 1(4)’ (HA)—( Ks 1—|—K4)'

By the estimate [|K L#H < 1 the operator 1 4+ Kj 1s invertible, hence, as well as earlier, there exist
invertible operators U; and Us such that

U2(1+K)U1:<1+A1 0 )

0 (14 Ky — Kz(14 K1) Ky

Then, with respect to the new decomposition Hy = M1BN, — MoBN2 = Hy, where My = Ui(LE),
Ny =Ui(Lp), Mo = U5 (L), No = Uy ' (Ly,), the operator (14 K) has the diagonal form and, therefore,

is an A-Fredholm operator and
index (14 K) = [Uy(Ly)] — [U; ' (Ly)] =0. O

Lemma 2.7.13 Let us consider an A-Fredholm operator F': Hy — Hy and let K € K4. Then the
operator F' + K is A-Fredholm and index (F + K) = index F.

Proof: Let us consider decompositions of the space H 4 in direct sums such that the matrix F' has the
diagonal form:

Ha = MiBNT 5 Mo@Ny = Hay.
Without loss of generality we can suppose that

Lp = N1&Py, My = LEGPy,

where Py is a finitely generated closed A-module. Let us choose a big enough number n in such a way

that ||K],.]| < |F; 1=t Let us consider the new decomposition of space H4:
Mi=Lr Ni=1L,, My=FLr No=TF(P)BN.
Let F' = LA n K = A:,l A:,Z 1s a matrix of F' and K with respect to the decomposition
0 F4 [\3 [\4
HA = Mléﬁl — Mzéﬁz = HA Then

F+[{:<F1—|—[\1 Ky )’

K; Fy+ Ky

and the operator Fj + K is invertible. By repeating the construction of Lemma 2.7.10 (about operators
close to a Fredholm operator), we obtain

V1] = [No] = [Ln] = [F(P1) + No] =
[M1] + [P1] = [P1] — [V2] = index F. |

index (F + K)

+ |

Theorem 2.7.14 Let
F:HA—>HA, DZHA—)HA, D/ZHA—>HA

be bounded A-operators admitting an adjoint and
FD=Idg, + K1, D'F=Idg, + Ky, Ki, Ko € K(Ha).

Then F' is an A-Fredholm operator.
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Proof: Let us consider a decomposition H 4, for which the operator FD = 1, + K; has the diagonal
form (Lemma 2.7.12)

Ha= MiBN B MoENs = Ha,
and the decomposition of space H 4 satisfies the conditions of Theorem 2.7.6. Let us consider the projection

P:HA:MzéNz — Ns.

It is a compact operator, P € End™ H4. The image of the operator (1 — P)(1+ K;) = (1 — P)FD is
exactly equal to M. It is easy to see that up to an isomorphism

(1-P)FD=(1-P)1+K)) =14 (—P(1+ K)))+ K, =1+ K,

D'(1— P)F=D'F—D'PF=1+K,,

where I}l € K4, IZ’Q € K4. By Lemma 2.7.13 it 1s possible to suppose without loss of generality that
F: Hs — My is an epimorphism. Otherwise, we will pass to the operator (1 — P)F. Let us consider now
the decomposition for 1+ K :

Ha=MEN, 5 ModN, 25 MoGN, = Ha.

The composition D’F|ﬂ1 My = Ms is an isomorphism. Therefore, since I : Hy — My is an
epimorphism, I : MiEN: — Ms maps M isomorphically in Ms and Ker F C N, My = F(Ml) +
F(N1). Let us show that F'(My) N F(N1) = 0. Decompose for this purpose F into a composition

MEN: = (MiENT)/ Ker F = MyB(N1/ Ker F) = M,
where F' is an isomorphism. Therefore
My = F(My)EF(N1/Ker F) = F(M)&F(N1).

Since the A-module Ay is finitely generated, F(N) is finitely generated too. We have obtained a de-
composition

Hy=MiGN| — F(M)E[F(N1)DN2] = Ha,

where F|ﬂ1 : My — F(M,) is an isomorphism. m|

Lemma 2.7.15 If bounded A-operators D, D' and F' admitting an adjoint are such that FD and D'F
are A-Fredholm operators then F' is an A-Fredholm operator.

Proof: By the definition of Fredholm property of F D and D'F we can find operators 7' and 7" admitting
an adjoint such that

(FD)T

T(D'F)

1+ K,
1+ K’

By Theorem 2.7.14 the operator F' is Fredholm. For T, for example, 1t is possible to take an operator

. . (Fl)_l 0 Fy 0 . ..

with the matrix 0 E where F'D has the form 0 F in the sense of Definition 2.7.4.
2

O

Remark 2.7.16 For A-Fredholm operators over W*-algebra A their properties are more similar to
properties of usual Fredholm operators. This problem we will discuss in Proposition 3.6.8.

Remark 2.7.17 For applications to elliptic operators it is important to develop the theory for spaces
of the form [5(P). It can be done similarly (see [61]).
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2.8 Representations of groups on Hilbert modules

In this section we assume that G denotes a compact group. First of all, we prove an equivariant variant of
the Kasparov stabilization theorem. Let us follow here the original proof [34]. For closely related problems
see also [45].

Definition 2.8.1 For a C*-algebra B put

oQ

Hp = (Viog B),

i=1

where {V;} is a countable set of finite-dimensional spaces, in which all irreducible unitary representations
G are realized (up to isomorphism) and each representation repeats an infinite number of times; the
B-Hilbert completion of the algebraic sum is carried out with respect to the norm given by the following
B-inner product on summands

(21 ® by, 22 ® ba) := (x1,22)v, - bTba, z1, x2 € Vi

Theorem 2.8.2 [34] Let B be a C*-algebra with a continuous action of a group G and £ be a countably
generated Hilbert G-B-module. The action is assumed to be unitary and agrees with the module structure
wn the sense that

g(xb) = g(x)g(b), (9(2),9(y)) = 9((z, v)), r,yefl, beB, ged.

Then there exists an equivariant B-isomorphism preserving the inner product
EDHp =Hp.

Proof: Let us denote by £t the module £, considered as a BT-module. Let us suppose that the action
of G on BY is extended from B by the formula g(1) = 1. Let us assume that we know how to prove the
theorem for unital algebras, so that

ET S Hp+ ZHp+,

whence

EOHp = (EoHB))B= (ET ®Hpt)B = (Hp+)B =Hp.

Thus, we can restrict ourselves to the case of unital B.

Let {1} be a countable system of generators of £ and {e;} be an orthonormal basis of Hp and each
er = vy @ lg, where v, € Viry- In other words, if {wy} is a union of some orthonormal bases of all V;
then e = wr @ 1g. Let {y;} be a system of elements in £ @ Hp, in which each element of the form
zr @ 0 and 0 & eg 18 repeated an infinite number of times. We can suppose that y; = 0 e; and put
W1 =04 V1 ® B. Let us assume that by induction we have already constructed subspaces W1y,..., W,
satisfying the following conditions

(i) W; is a C-finite dimensional G-invariant subspace in £ ® Hp,

(ii) each W; has a basis (2}, ... zK(i)) = (f1,..., fp) such that

et

(z1,2]) = 1g, (z1,22) =0fori#rorj#s,

(iii) there exists m = m(n) such that
Wit ..+ WaC&n=Ed (@%@B) :
i=1
and consequently (W7 + ...+ W,)B C &n,
(iv) the distance between y,, and (Wi + ...+ W,)B does not exceed 1/n.
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Remark that it follows from items (i) and (ii) that the modules W;B are pairwise orthogonal and G-
invariant, as well as (W1 + ...+ W, ) B. The last module is free, so by Lemma 2.3.7, it has an orthogonal
complement, which is G-invariant due to the unitarity of the action.

Let us pass to the construction of W, ;1. Put

p
y;+1 = ij<fja yn+1>a yg+1 = Yn+1 — y;z+1'
j=1

Then for any w € (W1 + ...+ W,)B

4

p p
(ol 0) = O Fibiynsr — D Filfi vy = D035 1) = (5, vng1)] = 0.
j=1 j=1

j=1

As by the definition of the sequence y; the element y,1 lies either in £ or in some V; ® B, so we have
Yn i1 € Eme for some m’ > m. Let us consider the orthogonal complement Sy v for (W1 + ...+ W,)B
in &,. It is an invariant module and y, ,; € Sy ;. By the Mostow theorem about periodic vectors [49]
the elements with C-finite dimensional orbits are dense in Sy, ;. Hence one can find a vector z € Sy,
such that ||z — y/ ]| < 2711? and R := Gz is an invariant finite-dimensional subspace of S), /. As z
is a totalizing vector, so R is an irreducible G-module. Therefore there exists m” > m’ such that there
exists an equivariant isomorphism T' : R — Vj,n. Let {hy, ..., hx} be an orthonormal basis of V,,» and
r; == [=Yh;), i = 1,... k. Then for the corresponding irreducible matrix representation 7' : G — U (k)

we have
k k

g(hi) =3 T (9)hi,  g(r) =3 T/ (), 9 €G,

Since R C &, and m” > m/, R is orthogonal to V,,~. More precisely, each element of R is orthogonal to
Vi @ Bin £ @ Hp. Hence (r;, h;) = 0 for any ¢ and j. Let

. . 1/2 .
— U — 12 C (B ,
z._;mal, a; € C, o= (Z|az| ) +1, i =1 + (h; ® 1) @n 1 2a’

i=1
Then (r},7}) = (ri,r;) + {(2n 4+ 2)a}~26;; and the matrix L := [|(r},7})||F¥;_, is positive and invertible
in My (C) C My(B). Let D = ||d;i]| := L=1/2 ¢ My(B) and r{ = Zle r}dﬂ. Let us take W, 41 equal
to the complex linear span of vectors r//, i = 1,... k, or, what is the same, to the span of v}, as D has
complex coefficients. Then Wy,11 C &y and

k
<7°£/a 7”3'/> = Z <r]/7dpia r:]dp]> = (D*LD)Z] = 6”

r,q=1

Since all h; and r; are orthogonal to Wy + ...+ W,, then W41 is orthogonal to it too. Further, let

F =LY% so that v := Z?:l 7 Fji. Then
k k k 1
gy =g [ Dovidii | =D (9ri)dsi =D (975 + (9h; © 1) - o | dii
, , : (2n 4+ 2)a
j=1 j=1 j=1
k k 1
-3 (Lt + (0o 1) gt )
j=1 \s=1 s=1
k 1 k
=22 T3 (g) (7t (e © 1) =22 T )iy
, (2n + 2)a ,
j=1s=1 j=1s=1
k k Eook
=22 T (Z TQ/F“) dii =2 i | 222 T (@) Fudsi | € Wosa.
j=1s=1 t=1 t=1 j=1s=1



k
Thus Wy 41 is G-invariant. Let us estimate the distance by putting 2’ = 3 7oy, so that

=1
k k 1 1 :
nt1) < "= i — || = hi®1p) hic;
p(z, Wast) < p(z,7) ZZ_;(T ri)a ;( L) G| T @t 2a Z_; o
. 1/2
N (£ tait)
el O LS 1 = 1
(2n 4+ 2)a — ! (2n + 2) & 1/2 (2n 4+ 2)
- (Shai)  +1
=1
Therefore
1 1
n Wi+...+Wa)B) <p(y!.., Wai1 B 2 < —.
PUntt, Wit o+ Wa)B) < p(Uog1,2) + (2, Waps B) < 5 ms (2, 4) < g <

Thus, by induction, the C-subspaces W; with properties (i) — (iv) are defined for any i. From the explicit
expression for r/ we obtain that W, is isomorphic to some V4, i. e., is irreducible. Further, the B-Hilbert
completion of M (i. e., the closure in £®H p) of the algebraic orthogonal sum of modules W, B gives the
whole €@ Hp. Indeed, by the property (iv) the algebraic sum is dense in EGHp. So, M =Z EDHp. Now
it is proved that M is isomorphic to Hp, i. e. that each irreducible representation repeats indefinitely
many times among W, B. Let us suppose the opposite, then M & Hpg = Hp, or

EPHEB=EPHBDPHB=2MDPHE = Hp. O

Let us prove now the theorem of decomposition of representations [47]. Let M be a Hilbert B-module
with a strongly continuous unitary representation G

T:G— U(M)C Endg(M), g— Ty,

and suppose that the group acts trivially on B. Let now {V;} be a complete collection of pairwise
nonequivalent unitary representations of (G, ds; be their dimensions, and D be their matrix elements,
which are continuous functions on (. For an invariant normalized Haar measure dg on G we define an
operator

Py M—o M, P _d/D z) dg. (16)

As for a fixed x € M a product of continuous complex-valued function by a continuous module-valued
function is integrated and as the group is compact, so the integral converges to some element M. We
obtain a bounded operator. Indeed,

12211 < de | |D3,TaT| 1Ty o) da < dsup [ 57,7 ol
G geG

Therefore
73]l < dosup Dy, )]

It is well known [8, 1,§7.1, Theorem 5], that

D7 {g) = 0, 5#5
/D D ) { 1(5””(5]”, s—=s. (17)

We need the following Peter-Weyl theorem.

Theorem 2.8.3 [8, 1,§7.2, Theorem 1] The functions \/ds D}y (g) form a complete orthonormalized system
in L*(G).

Lemma 2.8.4 The operators Pj, have the following properties
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(i) P, admits an adjoint and

(Byg)" = Pops (18)
(i) the following equality is fulfilled
P3Py =8 04 Pl (19)
(iii) the following equalities are fulfilled
ds
Tgpjsm = Zij(g) Pl (20)
i=1
ds
P]sng = ZDrsm'(g) Pfr (21)
i=1

Proof: First of all we remark that for unitary operators in M the mapping F' — F* is continuous in the
strong operator topology. In other words for unitary operators the strong continuity implies the *-strong
one. Indeed,

17" = F)al| = |[(F'=" = F= el = [|[F/(F'= = FTO) Fe|| = ||Fz — F'z|) = 0.

Therefore it 1s possible to take 77 instead of Ty in (16), and then take it out of the integral. More precisely,
the first equality in the following chain

_d/ dg_d/ g ) —d/D x)dg =P,

has to be verified at first at the level of integral sums, and passage to the limit is possible due to the
indicated #-strong continuity. Remaining equalities in the chain above are obtained by the invariance of
Haar measure and by the relations 77" = Tg_1 =T,-1. The item (i) is proved.

It follows from (16) that

P;(]P;Iql —d ds// / ( )TT dgdg
Since T,T, = T,4, by putting § := gg’ we obtain from
Dyp(9) = Dyo(G9'™Y) = Dy (9) Dy (9'™1) = Dy, (9) Dy (97)

and relations (17) that

S S s! 88 1 S SSI S
quPp/q/ =d ds// D D / , dg / T dg = d ) s 6qp/6rq/Ppr =94 6qplppq/

To prove the item (iii) let us remark that

T,P, —d/D Tyn (2 dh_d/ D (g~ Th) T (x dh_d/z s (h)Ty(x) dh

—Z ) /ZDS )T ( dh_Z i%(x)zi:ij(g)Pz%(”f)~

The second equahty of this item can be proved smnlarly. a
Lemma 2.8.5 The operators Py := P, are selfadjoint pairwise orthogonal projections.

Proof: If we will rewrite the statement of the Lemma as

(Py)" =Py, PPy = 6% dpp Py (22)
then the proof can be immediately obtained from (18) and (19). a
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Lemma 2.8.6 Let us put
ds ds
P=)"Pr=> P,
p=1 p=1

The operators P® have the following properties

(P*)" = P*, (23)
PP = §,,P°, (24)
T,P* = P*T,. (25)

In other words, P* are selfadjoint invariant pairwise orthogonal projections in M.

Proof: By the definition of P® the formulas (23) and (24) follow from (22) at once. To verify the third
relation let us consider the character of the representation V;

ds
X' (9) =3 D),
p=1
which, like the trace, satisfies the relation x*(g) = x*(hgh~!). One has also
P* = d; /st(g)Tg dg,

T,P* = dsTg/ X (") T, dg' = ds/ X (9 )Ty g-1Tydg' = ds/ (99" 9™ VT g g-1 dg'Ty = P°Ty,. O
G G G
Lemma 2.8.7 Let us define
M =P (M), M =PM, (26)
s=1
where the sum is supposed to be completed either as a Hilbert sum or (that is the same) as a closure in

M of the algebraic sum. Then
M =M. (27)

Proof: Let us assume that a C-linear functional f on M vanishes on M* and that « € M is an arbitrary

vector. Then for any set of indices we have Pfy(x) € M?*, so that

0= J(Pg () = ds /G DL @) £(Ty (x)) dg.

Therefore by the Peter-Weyl theorem 2.8.3 f(T,(¢)) = 0 holds almost everywhere, and by continuity it
vanishes everywhere. In particular, f(T¢(x)) = f(x) = 0. Hence by the Hahn-Banach theorem M* = M.
O

Theorem 2.8.8 [47] Let M be a Hilbert B-module with a strongly continuous unitary representation
G and let the group acts trivially on B. Let now {V;} be a complete collection of pairwise nonequivalent
unitary representations of G and

M, = HOHle(j(Vs,M) C Homg (Vs, M) =V @ M

1s a Hilbert B-module so that B-product is defined by the formula

dim V,
(o) = > {o(hd), ¥(h3))m, hi, ..o by, — orthobasis V.

i,7=1
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Then for the Hilbert sum we have G-B-isomorphism
FI@RI@%@MSEM, Ti:o@p—=ev), veEV, p €& Ms;,

and

F(‘/s & Ms) — MS,
where M? is introduced in (26).

Proof: Let us remark first of all, that ' are algebraically injective. Indeed, let
ds ds
Sgas e ) <o (3,
j=1 j=1

Since by the Schur lemma ¢ 1s either isomorphism, or 0, this equality can be true only if Zj;l hia; =0
or ¢ = 0. But then Z;l;l hia; @ = 0.

By Lemma 2.8.7 1t is sufficient to prove only that I'y maps bijectively V; ® M; to M?.

Let us remark that by putting M? := P (M) = P5(M), we obtain by relations (19) that the operators
P} realize 1somorphisms

P M5 — MS.

ds
Thus M* = P M 1s a sum of isomorphic modules.
j=1
Let {hS,.. ., hzs} be that orthobasis of Vi, with respect to which the matrix elements D;; were defined.
Let us define a homomorphism

Vi o Mi] = M, @°(h} @) = Pfi(x), (28)

where we have taken M3 in square brackets to underline, that there is no action of G on it. By the
properties of the operators P} the map ®* is an isomorphism. Since by (20)

o (h$ © 2) = ZD ) Py (x

and
@ (g(h5) 0 2) = @° (ZSDW ) ZD NP

the map @7 is equivariant. Further, there is a map
U M7 — M, U (z)(v) = ®* (v ® ).

Then
Tio(Ildy, @ ¥%)(v @ ) = * (v @ ).

As we have an isomorphism on the right and as T'; is algebraically injective, so T’y is an isomorphism (see
Lemma 2.8.10), whence ¥* is an isomorphism. In particular, the images of T'; coincide with M?® and are
orthogonal to each other. Hence T is topologically injective and its image coincides with M. ad

Remark 2.8.9 Let G—A-module M belong to the class P(A) of projective finitely generated modules.
Then obviously M; = Homg(V;, M) € P(A). Let us show that in the sum € only finite number of

s
summands does not vanish. Let us denote by ay, ..., as generators of M. Let us choose by the Mostow
lemma [49] C-periodic vectors by, ..., bs so close to ay,... a5, that they generate M as an A-module
(see Lemma 2.7.3). By decomposing the finite-dimensional G—C-module equal to the linear span of the
orbit Gb;, into irreducible modules, let us discover a new system of generators ¢y, ..., cy, now lying in
irreducible G—C-modules. From here it 1s evident that the number of nonzero summands does not exceed

N.
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Lemma 2.8.10 Let ' : L — M, T : N — L be continuous maps of Banach spaces, S = FT be an
tsomorphism and Ker F = 0. Then F is an isomorphism.

Proof: Since S is an isomorphism, and F is bounded, T is topologically injective and its image T'(N) is
closed in L. Let it not coincide with L. Let us choose a vector 0 # x € L\T(N). Then 0 # F(x) € FT(N).
Really, let F(2) = FT(y) for some y € N. Since z = Ty € T(N), z —x # 0, while F(z — z) =
FT(y) — F(z) = 0. We have got a contradiction with Ker ' = 0. Hence, T is a topologically injective
epimorphism, i. e., isomorphism, as well as F' = ST~1. a

Let us remind some facts about integrating operator-valued functions [32]. Let X be a compact space,
A be a C*-algebra, ¢ : C(X) — A be an involutive homomorphism of unital algebras, F' : X — A be
a continuous map and for each x € X the element F(z) commutes with the image of ¢. In this case an
integral

/XF(x)dgo e A

can be defined as follows. Let X = UI'_;U; be an open covering and Y ., a;(z) = 1 be a subordinate
partition of unit. Let us choose points §; € U; and form an integral sum

S(FAUY {ai} {6} = ZF(&)SD(%)~

If there exists the limit of such integral sums then it is called an integral.
If X is a Lie group (), it is natural to take as ¢ a Haar measure ¢ : C(X) = C, ¢(a) = [, alg) dg
and to define for a norm continuous map @ : G — B(H)

[ Qs = limZi:Q(&)/Gai(g)dga

where the algebra A is realized as a subalgebra in the algebra B(H) of bounded operators on a Hilbert
space H. If Q : G — P (A) C B(H), then since [ a;(g) dg > 0, we obtain that

ZQ(&) ~/Gai(g) dg € P*(A) and /GQ(g) dg € PT(4)

(the positive cone Pt(A) is convex and closed). Hence we have proved the following lemma.

Lemma 2.8.11 Let Q : G — PY(A) be a continuous function. Then for the integral in the sense of [32)
the following inequality holds

/GQ(g) dg>0. O

Theorem 2.8.12 [66] Let GL = GL (A) be the complete general linear group, i. e. the group of invertible
operators from End [5(A), and suppose that for the group G a representation g — T, (g € G, T, € GL)

1s given, and that the map
G xl3(A4) = 1(4), (g9,u)— Tyu

s continuous.
Then there exists an A-inner product on l2(A) equivalent to the initial one (i. e. generating an equiv-
alent norm) and such that the representation g — Ty ts unitary with respect to this new product.

Proof: Let (, )" be the initial inner product. For any u and v from [5(A) there exists a continuous map
G—= A,z (Tpu, Tyv). Let us define a new product by the formula

(u,v) = / (Tyu, Tpv) dx,
e

where the integral can be considered in the sense of any of two definitions in [32, p. 810], since the
map is continuous with respect to the C*-algebra norm. It is easy to see that this new product sets an
A-Hermitian map l2(A) x {3(A) = A and that by Lemma 2.8.11 {(u, u) > 0. Let us show that this map is

38



continuous. Let us fix an arbitrary u € lo(A). Then  — Ty (u), G — l2(A) is a continuous map defined
on a compact space, thus the set {7, (u) |2 € G} is bounded. Therefore, by the principle of uniform
boundedness [8, v. 2]

lim T3 (v) = 0 (29)

is uniform on € G. If w is fixed, then
[| T2 (w)]] < My = const
and by the equality (29) one has

ol = I [ (T, o)) ]

< My -vol G -sup||Ty(v)|]| = 0 (v —0).
zeG

We have obtained continuity at the point 0, hence on the whole space [2(A) x {3(A). For Tpu =
(ar(z), az(z),...) € l2(A) the equality (u,u) = 0 takes the form

/Ggw)a:f(x) dr =0,

Let A be realized as a subalgebra of the algebra of bounded operators on a Hilbert space L with an inner
product (, )r. For each p € L we have

0 = /Z z)de | p,p

A T

(cf. [32]). Therefore a;(x) = 0 almost everywhere, therefore a;(x) = 0 for all # by continuity and T,u = 0.
In particular, u = 0.
Since each operator Ty is an automorphism, we obtain

(Tyu, Tyv) = / (Toyu, Tyyv) do = / (Tou, Tov) dz = (u,v).
e

G

Now we show the equivalence of two norms, which, in particular, imply continuity of the representation.
There is a number N > 0 such that ||T;|]' < N for any « € . Hence by [32] we have

[Jull*

s )l = | /G (Tou, Tyuy daf|a

IN

2
(supliT2all) < N7y
zeG
On the other hand, applying Theorem 2.1.4 and Lemma 2.8.11, we obtain that

(u,u) = /G<Tg—1Tgu,Tg—1Tgu>/dg§/G||Tg—1||2<Tgu,Tgu>'dg

IN

/ N*{Tyu,Tyu) dg = N* / (Tyu, Tyu) dg = N*(u, u).
e e
Then (||ul])? = [[{u, w)'lla < N?|[{u, u)[|la = N?||u[]*. O

Remark 2.8.13  Since l3(P) is a direct summand in l3(A), the previous theorem remains valid for {5(P)
and any other countably generated module M.
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Remark 2.8.14 Before averaging we had had operators, which, in general, had not admitted an adjoint,
and after averaging we have obtained unitary operators out of them. In relation with this remark the
following problem arises. Is it true, that if a given operator represents an element of compact group,
then it admits an adjoint? The negative answer to this problem is contained in Example 2.3.2, as a
decomposition into direct (topological) sum defines a representation of the group Z/2Z.

Corollary 2.8.15 [67] Let M = MG M- be a topological decomposition into a direct sum of closed
Hilbert modules (not necessarily orthogonal). Then there erists a new inner product on the module M
equivalent to the initial one, with the respect to which the indicated decomposition is orthogonal.

Proof: Let us define an operator J : M——M by the equality

Ty — x, 1ifx e My,
Y= -z, ifr € M.

It is possible to consider the operator J as a representation of the group Z/2Z on the module M, and by
Theorem 2.8.12 the inner product (x, y>ﬁ = {x,y)+{(Jx, Jy) is equivalent to the initial one. Orthogonality
of My and M, with the respect to this inner product is evident. O

In Theorem 2.3.13 [68] we will show how the averaging theorem 2.8.12 can be generalized from the
case of compact group to the case of amenable group, but only for Hilbert W*-modules.

3 Hilbert modules over W*-algebras

3.1 Wr-algebras

Detailed information about W*-algebras can be found in the books [62, 12, 18, 60, 29]. We recommend
also the original papers of Murray and von Neumann [51] which are are still actual. We list here the basic
definitions and necessary facts.

Topologies on B(H). Besides the norm topology we will consider on the algebra B(H) of bounded
linear operators on a Hilbert space H also a number of other locally convex topologies, which we define
by sets of seminorms on B(H). Let a € B(H), £,&;,n,17; € H.

1. The o-weak topology is defined by the seminorms

[ [
c ol <oe D il < oo
i=1 i=1

2. The o-strong topology is defined by the seminorms

pla) = llagll, DIl < oo
=1 i=1

3. The o-strong* topology is defined by the seminorms

oQ

> (a&i, m)

i=1

pla) =

oQ

pla) = Y (lagll + la*&D?, Sl < .
=1

i=1

4. The weak topology is defined by the seminorms p(a) = |(a€,n)|.

5. The strong topology is defined by the seminorms p(a) = [|a€]].

6. The strong* topology is defined by the seminorms p(a) = (||a|| + ||a*&]])

On bounded subsets in B(H) the o-weak topology coincides with the weak topology, the o-strong
topology coincides with the strong, and the o-strong* topology coincides with the strong* topology.

A commutant of a subset R C B(H) is the set R := {a € B(H) : ar = ra for each r € R}. A
bicommutant of set R is the set R" = (R')".

/2

Theorem 3.1.1 (von Neumann bicommutant theorem) Let A C B(H) be an involutive subalgebra.
Then the following conditions are equivalent:
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(i) the algebra A contains the identity operator and is closed with respect to the o-weak topology;
(i) the algebra A contains the identity operator and is closed with respect to the o-strong topology;

(iii) the algebra A coincides with its bicommutant, A" = A.
In particular, it follows from here that if A C B C B(H) are two subsets then A" C B".

Definition 3.1.2 An involutive subalgebra in B(H) is called a von Neumann algebra if it satisfies the
conditions of Theorem 3.1.1.

In the von Neumann algebras there exists the polar decomposition: any element @ € 4 can be be
represented in a unique way as a = uh, where u is a partial 1sometry, and h is a positive element of the
algebra A, and Ker u = Ker h.

Universal enveloping von Neumann algebra.

Let w be a positive linear functional on a C*-algebra A, (7., H,) be a cyclic representation of algebra
A on a Hilbert space H, constructed with the help of the GNS-constructions. Let us put

(m, H) = €D (m, Ho),

wEA:_

where A% denotes the set of all positive linear functionals on the C*-algebra A. The representation
(m, H) is called universal. The universal representation of the C*-algebra contains any representation of
this algebra as a subrepresentation.

Theorem 3.1.3 The second dual space A** for a C*-algebra A equipped with the o(A**, A*)-topology is
homeomorphic to the bicommutant A" of algebra A C B(H) with respect to the universal representation
equipped with the o-weak topology.

The von Neumann algebra A!', where bicommutant is taken with respect to the universal representation,
is called a universal enveloping vn Neumann algebra for the C'*-algebra A and is denoted by A**. Any
homomorphism of C*-algebras A— B admits a natural extension up to a homomorphism of the second
dual spaces A**—B** . If A C B(Hy) and A—B(H) is the universal representation then Hy C H and
A c Al = A

Wr-algebras. The notion of W*-algebra allows to speak about von Neumann algebras without rela-
tion with a concrete Hilbert space where they act.

Definition 3.1.4 A C*-algebra A, which, as a Banach space, is dual to some Banach space I', A = F*,
is called a W*-algebra.

A Banach space F' is called pre-dual for A.

Definition 3.1.5 A linear functional ¢ on the von Neumann algebra A is called normal, if for any
increasing net ay € A, A € A, with the least upper bound a € A the value ¢(a) is the least upper bound
of the set p(ay).

Theorem 3.1.6 Let A be a W*-algebra. Then there erists a unique (up to an isomorphism) pre-dual
space for A, which coincides with the space of all normal linear functionals on A.

The pre-dual space of a W*-algebra .4 we will denote by A,. By P we shall denote the set of normal
positive functionals on A, P C A,. The pre-dual space A, is the linear span of the set P.

3.2 Inner product on dual modules

Hilbert modules over W*-algebras we shall call Hilbert W*-modules. Some aspects of the theory of Hilbert
C*-modules become more simple in the W*-case.

Theorem 3.2.1 ([52]) Let M be a Hilbert A-module. An A-valued inner product {-,-) admits an exten-
sion to the Banach module M, making it a self-dual Hilbert A-module. In particular, the extended inner
product satisfies the equality (f, Z) = f(x) for allz e M, f € M.
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Proof: Let f,g € M’. Our task is to define an inner product of these functionals (f, g). Let us define
for this purpose a map I' : P—C by the formula I'(¢) = (f,, 9y),, where ¢ € P is a normal positive
functional on A, and let us show that the map I' admits an extension to the set A, of all normal functionals
on A. For this purpose the following two technical Lemmas will be necessary.

Lemma 3.2.2 Let Ay,..., A, € C and ¢y ..., ¢, € P be such that ZZ 1A = 0. Then ZZ 1 AT () =
0.

Proof: Let us consider a normal positive functional ¢ = >""_, ¢;. Then ¢ > ¢;, i=1,...,n. If 2,y € M
then by the assumption

Z/\ e+ Ny),y+ Ny) W_Z/\ (z+ Ny, y+ Ny,) Z/\Zgol ({x,y)) =0,

i=1

therefore » ", AiVy o Ve e = 0. Remark that by (2.5.7)

Z/\ir(% Z/\ (foir90.)e Z/\ (Vo,oifor Vi o.90) 0 Z/\ V w,vwwszagw)w—o
i=1

i=1 i=1

It means, that the map I' can be extended to A,. O

Lemma 3.2.3 The map I' is bounded.

Proof: Tt is possible to present an arbitrary normal functional ¢ € AL as ¢ = ¢1 — pa + (3 — Y4,
where p; € P and Z?:l [l:ll < 2(]¢]|. Then

4 4
§Z|(sz’ng)Wz SZH-ﬁPz
i=1 i=1

4
o < 2 il AUl < 2 lg

i=1

®:

as required. O

Let us continue the proof of the theorem. We have defined a linear functional on A,, which is also
denoted by T. Since A is isomorphic to the space of linear functionals on the pre-dual space A. [62],
there exists a unique element (f, ¢} € A such that T'(¢) = ¢((f,g)) for all ¥ € A., in particular,
(fo 90)o = ©({f, g)) for all ¢ € P. Sesquilinearty of the defined map (-, -) : M’ x M'—A follows from
linearity of the map f —— f, from M’ to H, for ¢ € P. Let us show that (-, -) satisfies the properties
(i) - (iv) of Definition 1.2.1.

(1) The inequality (f, f) > 0 follows from the fact, that for all ¢ € P we have o(({f, f)) = (fo, fo)» >0

(i) Let {f, f) = 0 for f € M’. Then f, = 0 for all ¢ € P, hence ¢(f(x)) = 0 for all + € M, whence
it follows that f = 0.

(iii) Since for any ¢ € P

o((f,9) = (fwagw)w = (gwafw)w =e(g, 1)) = 80(<gaf>*)a

we conclude that (f,g) = (g, f)".

(iv) Let a € A, ¢ € P. Let us define a functional ¢, on the algebra A by the equality ¢, (b) = ¢(a*b),
be A Then ¢, € A, and ¢, = Z?:l Aip;, where \; € C, ; € P. Let us put ¥ = ¢ + Z?:l ©;, then ¢
is a positive functional and ¢ > ¢, 1, ..., 4. It follows from Proposition 2.5.7 that

4

4 4
) = Z/\i%«f’g» = Z/\i(fwmgw,)wl = Z/\i(fwn Vi oidu)e:
i=1 i=1

i=1

But for each x € M

Il
M*
?ﬁ
“H
+
2
3’
§
|
Q
=
&
Il
5
Q
*
=
&

4
D Ailfer Vi (e + Ny,
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Since the subspace M /Ny is dense in Hy, for any ¢ € P the following equality holds

4

Pa™(£,9)) = Y Xilfoir Vooo)pe = ((F - @), Viogp)o = ((F - @)p, 90)0 = 9({f - a,9)),

i=1

hence a*(f,g) = {f - a,¢). Passing to adjoints, we obtain also (f,g)a = (f, g - a).
The thus obtained inner product on M’ is an extension of the inner product from M. Indeed, if
z,y €M, ¢ € P then

P(@,9) = (Te,Yp)e = (2 + Noyy + No)o = ¢((2,9))-

Hence (z,y) = (x,y). Further, if f € M’, then

p((f,7) = (for Tp)o = (f(2)),

therefore (f,z) = f(x). Let us show that M’ is complete with respect to the norm |[|-|| ,,, defined by the
constructed inner product. On M’ there exists also the norm ||-|| defined as the norm of linear maps from
M to A, with the respect to which the space M’ is complete. Let us prove that [|-|| ., = ||-||. Since

F@) fe) = @ N2 <l (@),
we obtain that || f|| < ||f|| .- But, since [|f,]] < [|f]| [|¢||*/? for each ¢ € P,

170 = I D = sup{llfell5 = o € Pullell = 13 < 1117

and (||| v = ||l
S|(|),| |i/E/lis pr|(|)\|/|ed that M’ is a Hilbert .A-module. It remains to verify that it is self-dual. Let F' € (M')".
The restriction of F to M C M’ is an element of the module M’ therefore it is possible to find a
functional f € M’ such that F(z) = f(z) for all z € M. Let us define a functional Fy € (M’)’ by the
equality
Folg) = Fg)—(f,9), geM.

It is obvious that Fy(Z) = 0 for all x € M. We have to verify that Fy(g) = 0 for all g € M'. Let ¢ € P.
Choose a sequence {y, + N, } in M/N,, converging to g,. Since Fy is bounded, we can find a number
K such that Fy(h)*Fo(h) < K{h,h) for all h € M'. For alln=1,2,...

©(Fo(g)" Folg)) = o(Fo(9 = Yn) Folg — ¥n)) < Ko({9 — Yn, 9 — Un))-
But since

P9 =Un,9—=Un)) = (9p:90)0 — (Un + Ny, 90)e — (96, Yn + No)o + (Yn + Np, vn + Ny
2
= llge — (o + NI

©({g — Yn, 9 — Yn)) = 0, therefore
e Folg)" Folg)) = 0. )

Since the equality (1) is true for any normal functional ¢ € P, we obtain that Fy(¢) = 0. O

3.3 Hilbert W*-modules and dual Banach spaces

Proposition 3.3.1 Let M, N be Hilbert C*-modules over a W*-algebra A, T : M—N be a bounded
operator, T € Hom4 (M, N). Then there exists a unique extension of the operator T up to an operator

T: M —N".

Proof: Let us define an operator 7% : N—s M’ by the equality (T#y)(z) := (y,Tz), € M,y € N.
Since ||(T#y)(x)|| <|ITII|=]| l|y]|, the operator T# is bounded, ||T#y|| < |IT|I¥ll- For any a € A

(T#(y - a)(x) = (y -, T) = *(y, Tx) = (T*y) - a)(x),
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Therefore, the map T# is A-linear. Let us define a map 7' : M'—N" by the equality (Tf)( ) = (f, T#y)
forye N, f € M. Since T = (T#)# the map T is also a bounded .A-module map. The equality
(Tl‘)( ) = (Tx)( ) demonstrates that the operator T is an extension of the operator 7.

Let us show uniqueness of this extension. Let S : M’—s A" be a bounded .A-module map c01nc1d1ng
with 7' on the submodule M = {2 :2 € M} C M'. Then their difference V = T — S vanishes on M.
Since the module M’ is self-dual, the operator V' has an adjoint operator V* : N'—M'. If ¢ € N7,
z € M then

(V7g) () = (V79 7) = (9, VZ) =0,
1.e. V* =0, therefore V =0, hence S = 7. O

Corollary 3.3.2 Let M be a Hilbert A-module. Then the map T +—— T defines a monomorphism
End% (M) C End% (M) = Endg(M’). O

Let us show that self-dual Hilbert W*-modules are dual Banach spaces, as well as the C*-algebras of
operators acting on them.

Proposition 3.3.3 ([52]) Let M be a self-dual Hilbert W*-module. Then M is a dual Banach space.

Proof: Let us introduce the denotation M? for the Hilbert module M considered as a Banach space
with multiplication by scalars given by the formula A -z := [z, # € M?°. Let us consider an algebraic
tensor product A, ® M? over the field C, where A, is a pre-dual space of normal functionals on A. Let
us equip the space A, ® M? by the maximal cross-norm and for x € M let us define a linear functional

¥ on A, ® M? by the formula
i=1 i=1

where ¢1,...,0n € Ax, Y1, ..., yn € MP?. This functional is well-defined. Since

& (Z wi ® yi)
i=1

it follows from the definition of the maximal cross-norm [3] that ||£|| < ||#||. Let us show that actually
12| = [Jz]|. Let {¢,} be a sequence of functionals of the norm 1 in A, such that ¢, ((z, z))| = ||z|°. For
each element of the form ¢, ® # € A, @ M° we have ||| [|#]] = ||| and |&#(¢n @ z)| — ||x||2, therefore
[|z|] < [|Z]|- Hence it is shown that the map @ — & defines an isometric inclusion M C (A, ® M?)*. To
prove the statement it is sufficient to demonstrate that the set M = {& : 2 € M} is closed in (A, @ M°)*
with respect to the weak™ topology, because it would mean that M is isomeric to the dual space of some
quotient space of A, ® M°. Let {#,} be a net in M, converging to some element F' € (A. @ M°)*
with respect to the weak* topology. For y € M let us define a linear functional on A, by the formula
O, () = F(¢ @y), where ¢ € A,. The functional ® is bounded, ||®|| < ||F||||ly]|, therefore there exists
a unique element f(y) € A satisfying the properties ||f(¥)|| < [|F||||yl|| and F(¢ @ y) = ¢¥(f(y)*) for all
1 € Ai. The map f is linear. Let us show that it is A-linear as well. Let y € M, a,b € A, p € A,. Let
us define a normal functional ¢ € A, by the equality (b)) = ¢(a*b). Then it follows from the equalities

p(fly-a)’) = Fleo(y-a)) =limi.(p @ (y-a)) =limp((y-a,za))
= lime(a™(y, z0)) = lme((y, 24)) = F( @ y)
V([ (9)7) = pla™ fy)") = p((f(y)a)™),
which hold for any ¢ € A, that f(y-a) = f(y)a. Since the module M is self-dual, we can find an element
g € M such that f(y) = (xo,y), therefore F' = &g, hence M is closed in (A, @M°)*. DO

Consider the weak* topology on the dual Banach space M. Obviously a net {z,} in M converges to
an element # € M with respect to this topology iff ¢({y, z.))—>¢({y, x)) for every ¢ € A, and for every
y e M.

Some modification of the previous reasoning allows to obtain also the following

Proposition 3.3.4 ([52]) Let M be a self-dual Hilbert W*-module. Then the C*-algebra End’y (M) is a
W*-algebra. O

n
<zl Y Ml il
i=1
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3.4 Properties of Hilbert W*-modules

The elements of self-dual Hilbert W*-modules admit the following convenient representation (an analog
of polar decomposition).

Proposition 3.4.1 ([52]) Let M be a self-dual Hilbert W*-module. Any element x € M can be repre-
sented as v = z - (&, x>1/2, where z € M is such that (z,z) is the projection onto the image of {(x, x>1/2.
Such a decomposition is unique in the sense that if &t = 2’ - a, where a > 0, and if (z', 2"} is the projection

onto the image of a then 2’ = z and a = (&, x>1/2.

Proof: For # € M, n € N let us put
an = ((x,2) 4 1/n)'/?, Tp=x-a;’.

Since (x,, xn) = (z,2)((z,2) + 1/n)L ||z,]| < 1. Let y € M be a point of accumulation of the sequence

{,} in the weak* topology (which exists due to compactness of the unit ball). Since | a,, — (x, x>1/2 H -0
and %, - a, = x, then = y - (x, x>1/2. Let p be the projection onto the image of (x, x>1/2. Then
pla,a)!? = (@,0) 1 = (0, 2)%,
therefore # = y - p(x, x>1/2 and
(w,2) = (2,2) ply, y)pla, o).
Hence,
(. 2)' " (p = ply. ) e, 2) 1 = 0.
Since ||y|| < 1, we have p — p{y, y)p > 0, therefore
(2, 2)"*(p = ply, ypp) "/ = 0,
1/2 /2 _

whence it follows that p(p — p(y, y)p)*/* = 0, hence p = p(y, y)p. Let us put z = y-p. Then z - (z, x)

1/2
yop(m )P = (z,2)=ply,yyp=pand z - p=z.
To prove the uniqueness of the decomposition suppose that = 2’ - a, where a > 0, and that (z’, ') is
the projection onto the image of a. Then (x, ) = a{z’, 2')a = a?, therefore a = (x, x>1/2 and (z',z") = p.
Since (z' — 2" -p, 2/ — 2/ - p) = 0, we obtain 2’ = z’p. Also one has

(z,2) = (@, )"* = (2, "), )%,
ie. (p—{(z,2")){x, x>1/2 = 0, whence we obtain that (p — (z,2"))p=p—{(z,7' - p) = p—(2,2') = 0. Now
it can be easily seen that (z — 2/, z — 2’) = 0, hence 2’ = z, and it completes the proof. O

Let {p,} be some set of projections in a WW*-algebra A. For each of them the set M, = po.A C A has a
natural structure of one-generated projective Hilbert A-module. Similarly to the definition of the standard
Hilbert module we can define the module &4,M,, as the set of sequences (mg), my € My C A such
that the series Za msm converges with respect to the norm in A. The dual Hilbert module (6,M4)’
1s called an ultra weak direct sum of the modules M. For self-dual Hilbert WW*-modules we have the
following structural

Theorem 3.4.2 ([52]) Let M be a self-dual Hilbert W*-module over A. Then there exists a set {ps} of
projections in A such that the module M s isomorphic to the ultra weak direct sum of the modules pyA.
O

Proposition 3.4.3 Let N' C Hy4 be a Hilbert submodule over W*-algebra A. If N+ = 0 then the dual
module N coincides with H';.
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Proof: Let j : N—H 4 be an inclusion of modules. The restriction of functionals f — fly, f € HYy,
defines a map j' : Hy— N’ dual to j. If f € H/; is such that f|xr = 0 then fLA, and by assumption
one has f = 0, therefore the map j’ is injective. Let us consider the composition of maps

i=j o 0j: N Hs— Hj—N".

If n € A then i(n) = j/(_]%) = j(n)|s = 7, therefore the map i coincides with the inclusion map
“: N < N7, The dual map (after the identification of the first and second dual modules)

(i'od) =i ot N = N'"—H) —N'

is an isomorphism, therefore the map ¢’ should be surjective, therefore the map 7’ is surjective. 0O

Proposition 3.4.4 Let A be a W*-algebra, R C H 4 be an A-submodule without orthogonal complement,
ie. RV =0in Hy. Then R/ = HY).

Proof: It is sufficient to demonstrate that if orthogonal complement to a submodule R in H 4 is equal
to zero then the orthogonal complement to R in the module H; is equal to zero too. Let us assume
the contrary. Suppose that it is possible to find a functional f € H’; such that f(r) = (f,r) # 0 for
some r € R. But the series > 2, fFr; is norm convergent in A, therefore there is a number n such that

FO(2) £ 0 for f) = (f1,..., fa,0,...). But, as f(*) € H4, so we get a contradiction. O

3.5 Topological characterization of self-dual Hilbert W*-modules

Let A be a W*-algebra, M be a Hilbert A-module, P € A, be the set of normal states on A. Let us define
(see [22]) two topologies on M with the help of sets of seminorms. A topology given by the system of
seminorms ¢((-, -))'/?, ¢ € P, we denote by 71, and a topology given by the system of seminorms ¢((y, -)),
y €M, p € P, we denote by . In the case, when A = C and M is a Hilbert space, the topology 7 is
the norm topology and the topology 7 coincides with the weak topology, therefore in general these two
topologies do not coincide.

Theorem 3.5.1 ([22]) Let M be a Hilbert W*-module. Then the following conditions are equivalent
(i) the module M is self-dual;
(i) the unit ball By (M) is complete with respect to the topology 11 ;

(iii) the unit ball By (M) is complete with respect to the topology 1.

Proof: Let us prove the implication (i)= (ii). Assume for this purpose that the unit ball By (M) is not
complete with respect to the topology 7. Let us denote by L the linear span of the completion of By (M)
with respect to the topology 7. For the extensions of seminorms from M to L we use the same notation.
By the assumption there exists an element » € L\ M and a net {y, }, o € A, bounded with respect to the
norm, such that for any ¢ € P and for any ¢ > 0 there exists some o € A, for which o ((r—ys,r—ys)) <¢
for all B € A, B > «a. For arbitrary x € M we have

(g ) = (s ) = Iy — vy, D) < (e, )P 0({ys — v,y — wa)? < (26 p((2, )1/

for all 3,4 > «. Therefore there exists in the W*-algebra A the limit (with respect to the o(A, A)-

topology)
R(z) =lim(y,, z) € A

for each © € M. The inequality

lp(Cys, )| < llllsup{lyall - o € A}

shows the continuity of the map R : M—A, x — R(z). It is obvious that the map R is an .A-module
map, therefore R is a functional on M. By assumption the module M is self-dual, therefore there exists
an element z € M such that R(z) = (z,z). Then limy (yo, %) = (z,2) (where the limit is taken in

46



o(A, A.)-topology), therefore the net {y,} converges to the element z € M in the topology 7 and r = z,
— a contradiction to our assumption.

Let us prove now the implication (ii) = (i). The extension of the inner product to the dual module
M’ we still denote by (-, ). Tt is easy to see that the ideal (M, M) € A is norm dense in the ideal
(M My € A, therefore (M, M) € A = (M, M’) € A. Let us consider at first the case, when a W*-
algebra A is o-unital. Then there exists an exact normal state ¢ € A. (see [12], Prop. 2.5.6). Let {H, 7, &}
be the cyclic representation associated with . The vector ¢ € H is simultaneously cyclic and separating.
The linear space M with the inner product (-,-) = ¥({-,-)) becomes a pre-Hilbert space and the map
Y(f()) : M—C, where f € M’', becomes a linear functional on M. Then one can find an element f,
in the completion of the space M with respect to the norm ((-,-))'/? such that (fy,z) = ¥(f(x)) for
all # € M. It means that there exists a sequence (z;), #; € M, i € N, such that

2

0= lim (e = fy i = Jy) = lim $((@ — £,8 — 1) = lim | (=@ - 7,3 - )]

where by T the image of the element x under the canonical inclusion M C M’ is denoted. Since the vector
& is cyclic and separating, there exists the limit (in the o(A, A,)-topology on A) lim; (z; — f,2; — f) =0
(see [12], Lemmas 2.5.38, 2.5.39), Therefore f € M and the module M is self-dual. Let us pass to the
general case. If a W*-algebra A is not o-unital then it is possible to choose a directed set of projections
{pat, @ € A, po € Asuch that for each o € A the algebra p,Ap,, is a o-unital W*-algebra and lim,, p, = 1
where the limit is taken in the o (A, A,)-topology. As it was proved earlier, the functional fp, on Hilbert
PaApg-module po M is an element of the module p, M for all @ € A. But then there exists the limit (in
the 7 topology) of the net {fpq}, it belongs to M, and is equal to f, so self-duality of the module M is
proved.

It remains to show equivalence of conditions (ii) and (iii). If By (M) is complete with respect to the
topology 7 then M is self-dual, therefore it is a dual Banach space with respect to the topology m (see
Prop. 3.3.3), hence B;(M) is complete with respect to the topology 72. Let us assume now that By (M)
is complete with respect to the topology 7 and {2}, @ € A is a bounded Cauchy 7-net. For all y € M,
8,7 € A, ¢ € P we have

le((y,28)) — (w2 P < oy, W) e(2p — 2, 25 — 24)). (2)

As well as earlier, L denotes the linear span of r-completion of By (M). There exists the limitin L (with
respect to the topology 1) limg #, =t € L. Tt follows from the inequality (2) that {z,} is a Cauchy net
with respect to the topology m as well. But as the topology 7 is weaker than the topology 7y, so one has
L C M, therefore limits lim; x; with respect to the topologies 7 and 7 coincide and are equal to ¢ € M,
whence one gets the completeness of M with respect to the topology =. O

3.6 Fredholm operators over I/ *-algebras

In this section we denote by A an arbitrary W*-algebra. Let us prove that the properties of Fredholm
operators in this case are more similar to the properties of the C-Fredholm operators than in the general
C*-case. We present here slightly modified results of [26]

Lemma 3.6.1 Let M be a self-dual Hilbert C*-module over a W*-algebra A. For each closed submodule
N C M the biorthogonal set N+t C M is a Hilbert A-submodule and a direct summand of M, as well
as its orthogonal complement N1

Proof: The fact, that At C M is an A-submodule, is obvious by the definition of the orthogonal
complement. Let us consider the inclusion ¢ : N/ — M and its adjoint map * : M = M' — A"
Since dual W*-modules are self-dual, :* admits an adjoint, and consequently its kernel is an image of a
selfadjoint projection, 1. e. it has orthogonal complement in M. But

*(m) =0 & *(m)(n) =0Vn €N & (i(n),m) =0¥ncN & mec Nt O

The example 3.6.3 below demonstrates that the situation, which differes from described in Lemma 3.6.1,
can arise, for example, for Hilbert C*-modules over the C*-algebra A = C([0, 1]).
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Lemma 3.6.2 Let ¢ be a bounded module morphism of a self-dual module M. Then the kernel Ker(¢)
of the map ¢ is a direct summand in M and satisfies the equality Ker(¢) = Ker(¢)++.

Proof: By Propositon 3.3.4 the algebra End 4 (M) = End’ (M) is a W*-algebra, therefore there exists
a polar decomposition in it

o=US, S5>0, U isa partial isometry, Ker ¢ = Ker U,

exists p = p* = p?, Ul—p)=0, pUUp=np,
Ker ¢ = Ker U is the image of a selfadjoint projection 1 —p. O

Example 3.6.3 Notice that the kernel of bounded A-linear operators on Hilbert A-modules over arbi-
trary C*-algebra A is not a direct summand. For example, consider the C*-algebra A = C([0, 1]) of all
continuous functions on the interval [0,1] as a Hilbert A-module over itself equipped with the standard
inner product (a,b)s = a*b. Define the mapping ¢, by the formula ¢.(f) = ¢ - f for the fixed function

o =224+1 0 2 <12
9(@) = 0 x> 1/2

and for every f € A. Then Ker(¢,) equals the Hilbert A-submodule and (left) ideal {f € A : f(z) =
0 for € [0,1/2]}, being not a direct summand of A, but nevertheless, it coincides with the bi-orthogonal
complement to itself in A.

Corollary 3.6.4 Let ¢ : M — N be a bounded A-linear mapping. Then the kernel Ker(¢) of ¢ is a
direct summand of M and has the property Ker(¢) = Ker(¢)1+.

Proof: Consider the self-dual Hilbert A-module £ formed as the direct sum £ = M ©& A equipped
with the A-valued inner product {., )as + (., .)a. The mapping ¢ can be identified with a bounded A-
linear mapping ¢’ on £ acting on the direct summand M as ¢ and on the direct summand N as the
zero operator. Since the kernel of ¢’ is a direct summand of £ which contains &' by Lemma 3.6.2, its
orthogonal complement is a direct summand of M. O

Example 3.6.5 Let A be the set of all bounded linear operators B(H) on a separable Hilbert space H
with the basis {e; : ¢ € N}. Denote by k the operator k(e;) = Aje; for a sequence {A; : i € N} € ¢,(R).
Then the mapping ¢, : A — A, ¢x : a — a -k is a bounded A-linear mapping on the left projective
Hilbert A-module A. But the image is not a direct summand of this .A-module and is not even Hilbert
because direct summands of A are of the form Ap for some projection p of A, and 14 - k should equal p.
The image of ¢ is a subset of the set of all compact operators on H. Notice that the mapping ¢ is not
injective.

The following statement under some restrictions can be proved in the C*-case as well [38, 41].

Proposition 3.6.6 Let M be a self-dual Hilbert module and {N,{., )} be arbitrary. Suppose there exists
an injective bounded module mapping o : M — N with the range property a(M)*+ = N. Then the
operator oz(oz*oz)_l/z is a bounded module isomorphism of M and N'. In particular, they are isomorphic
as Hilbert A-modules.

Proof: The mapping o possesses an adjoint bounded module mapping o* : A" — M due to self-duality
of M. As a*« is a positive element of the C*-algebra End 4 (M) of all bounded (adjointable) module
mappings on the Hilbert .4-module M, so its square root (a*«)!/? is well-defined by the series

oo/ — ~ lim aa1/21 (i (a*a) k
(a"a)'/? = ||| ~ Tim [|(a"a)] (dM ZA (dM (o >||))

with coefficients {Ax} taken from the Taylor series at zero of the complex-valued function f(z) =1 — =
on the interval [0,1]. Moreover, because

(0% )/ (x), (a*a) /() = (a(x), a(x))
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and due to injectivity of a the mapping (a*a)'/? has trivial kernel. Notice that the range of (a*a)'/?
is 7 -dense in M. Indeed, for every A-linear bounded functional r(-) = (.,y) on the self-dual Hilbert
A-module M mapping the range of (oz*oz)l/2 into the origin one has

0= ((a")!2(x),y) = (x, (a") /2 (y))

for every # € M. Hence y = 0 as (oz*oz)l/2 is injective and & € M was arbitrarily chosen.

Now consider the mapping o (a*a)~? defined on M. Since (a*a)*/? has both rj-dense range and trivial
kernel by the assumptions on «, its inverse unbounded module operator (oz*oz)_l/2 1s 7 -densely defined.

One gets
(a(a™a)™2(x),a(a%a) "2 (y)) = (,y)

—1/2 —-1/2

for every x,y from the (r-dense) domain of (a*a) . Consequently the operator a(a*a) can be
extended to a bounded isometric module operator on M by 7i-continuity. Its range is 7-closed (i.e. a
self-dual direct summand of A), hence it equals A" by assumption. O

Corollary 3.6.7 Let M be a self-dual Hilbert module and {N,{.,.)} be arbitrary. Fvery injective module
mapping from M into N is a Hilbert A-module isomorphism of M and of a direct summand of N.

Proposition 3.6.8 Let M and N be countably generated Hilbert modules and F : M — N be
a Fredholm operator. Then Ker F' and (Im F)L are projective finitely generated A-submodules, and
index ' = [Ker F] — [(Im F))1] in Kq(A).

Proof: Let M = M¢P My, N = Ny & N, be the decompositions from the definition of A-Fredholm
operator:
F—(FO ’ )'/\/l P M = Ny N
— 0 Fl . 0 1 0 1,

Fy: Mo =2 Ny, Iy - My — N1, My and N7 are the projective finitely generated modules. Let x = zq+1,
o € My, 1 € My and F(z) = 0,50 0 = Fy(xg) + Fi(z1) € No @ N1. Thus Fy(xg) = 0, Fi(z1) = 0,
so g = 0 and z € M. Thus Ker F = Ker I}, C M;. By Lemma 3.6.2 Ker F' is a projective finitely
generated A-module and has an orthogonal complement. So, by Corollary 3.6.7

Fo 0 0 A -
F=| 0 F 0] : M@M @KerF = (No& F(M)) €D (1m F)*
0 0 0

and index F = [Ker F]— [(Im F)*]. O

The following example shows that the situations may be quite different for general Hilbert C*-modules
and injective mappings between them:
Example 3.6.9 Consider the C*-algebra A = C([0, 1]) of all continuous functions on the interval [0,1] as
a self-dual Hilbert A-module over itself equipped with the standard A-valued inner product {(a, b4 = a*b.
The mapping ¢ : f(x) = «- f(2), (z € [0, 1]), is an injective bounded module mapping. Its range has
trivial orthogonal complement, but it is not norm closed and, consequently, not a direct summand of A.
Nevertheless, the bi-orthogonal complement of the range of ¢ with respect to A equals A.

Lemma 3.6.10 Let P and Q be self-dual Hilbert A-submodules of M. Then P N Q is a self-dual Hilbert
A-module and a direct summand of M. Moreover, P + Q C M is a self-dual Hilbert A-submodule.

If P 1s projective and finitely generated then the intersection P N Q is projective and finitely generated
too. If both P and Q are projective and finitely generated then the sum P + Q s projective and finitely
generated too.

Proof: Let p: M =P &P+ — P+ be the canonical orthogonal projection existing by Proposition 2.5.4.
Let pg = p: Q — PL. Since Q is a self-dual Hilbert A-module pg admits an adjoint operator and
Kerpg C Q is a direct summand by Lemma 3.6.2. Consequently it is a self-dual Hilbert .A-submodule of
Q C M. But Kerpg =P N Q. To obtain the second assertion one has to apply again the fact that every
self-dual Hilbert A-submodule is a direct summand by Proposition 2.5.4.

If P is projective and finitely generated then every its direct summand is projective and finitely generated,
what proves the remaining assertion. 0O

For C*-algebras it is possible to prove the following analog of Lemma 3.6.2.
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Proposition 3.6.11 Let A be a C*-algebra, M and N be self-dual Hilbert A-modules, ¢ : M — N be
a bounded A-linear mapping. Then the kernel Ker(¢) of ¢ coincides with its bi-orthogonal complement
wnside M. In general, it 1s not a direct summand.

Proof: Let us assume that Ker(¢) # Ker(¢)11 with respect to the A-valued inner product on M. Form
the direct sum £ = M @& N. The mapping ¢ can be extended to a bounded A-linear mapping ¢ on £ if
we set

olz) :+ zeM
1/)(1‘):{ (3 : QLEN

Extend ¢ further to a bounded A**-linear operator on the corresponding Hilbert A**-module £#. By
Lemma 3.6.2 both sets Ker(¢)# and (Ker(¢)11)# are contained in the kernel Ker(%) of v, which is a
direct summand of £# and Ker(v) = Ker(¥)t1 holds. This contradicts the assumption. The second
assertion follows from Example 3.6.3. O

4 Reflexive Hilbert C*-modules

4.1 Inner product on bidual modules
For Hilbert C*-module M over C*-algebra A we shall define the bidual Banach right A-module M” as a

set of bounded A-homomorphisms from the dual module M’ into A. It turns out that an inner product
on M can be extended to the bidual module for C*-algebra A unlike the dual module, which admits an
extension of an inner product only in the case of W*-algebras.

Let z e M, f € M'. Put

The map x — & is an isometric map from the A-module M into the A-module M"":
sup{[[f(x)[] : f € M/, |IFI < 13 < (ISl < (el

. I 1
2l = g @l = e e )l = el

&
[

For a functional /' € M" we define a functional /' € M’ by the formula
F(z) := F(3).

Identifying M and M = {Z:2 € M} C M’ we obtain that F is the restriction of F' to M C M’
Remark that (#) = Z for all x € M. It is clear that the map F —— F' is an A-module map from AM" to

M’ and
Let us define an inner product (-, -) : M"” x M"”— A by the equality

ﬁH < |IF||. We will check soon that this map is an isometry.

(F,G):=F(G), F,GeM" (1)
It can be directly checked that (F'-a,G) = a*(F, ) for a € A. Besides, for z,y € M one has
(&,9) = () = #(@) = @) = (y,2)" = (z,y),

therefore the inner product defined by equality (1) is an extension of the inner product on M. To check
out the properties of an inner product we need the following construction.

Consider the right A-module A x M. Besides the natural inner product (-, -),, defined by the formula
((A,2),(b,y)), = a*b+{x,y), where a,b € A, x,y € M, we consider another inner product on the module
A x M. Let us take f € M', f # 0, and a number ¢ > ||f|| and put

((a,2), (b,y));, = ?a"b+a™ f(y) + F()b+ (x,y). (2)
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Properties (iii) and (iv) of the definition 1.2.1 hold obviously. Let us check the properties (i) and (ii). The
first one is valid due to the inequality

((a, ), (a, x)>f7t = ta*a+a* fzx) + f(x)*a+ (x,x) >
> B0 )+ )t ) ) 3)
> t*a"a+a* f(x) + flx) a+ tlzf(x)*f(x) (4)

(ta + %f(x)) * (ta + %f(x)) > 0.

Suppose that ((a, z), (a, )>f = 0. Then equality should be reached at each step in (3) — (4). Subtracting
the line (3) from the line (4), we obtain

(72 = t72) f(2)* f(z) = 0,

therefore f(x) = 0, hence t?a*a + (z,2) = 0, and we can conclude that @ = 0 and = 0, so we have
checked validity of the property (ii). Thus, the module A x M with the inner product defined by the
formula (2), is a Hilbert A-module. The norm on this module corresponding to this inner product we
denote by ||- || + and the Hilbert module A x M equipped with this norm we denote by (AXx M); .. Notice

that [](0, l‘)Hft = ||z||. For #,y € M, a € A we have

1 a+ 2@ = lla* F) + (5 = [((a,2), (0, 9)),,

Therefore

< a2y - 109 e = Myl - llas )4 1 5

1 -a+2)|| < l(a, 2)] ;- (5)

Proposition 4.1.1 ([53]) Let N' C M’ be a submodule, containing the module M. Then the norm of

Proof: Without loss of generality we assume that [|¢|| = 1. Define a functional f € M’ by the formula
f(z) :=¥(Z), x € M. Then ||f|| < 1.1t is necessary to prove the inverce inequality ||f]| > 1. Take g € N
such that ||g|| < 1, and put ¢ = ¢(g9) € A. For a € A, # € M we have

llea+ f(@)l| = 1l¢(g - a+ D) < llg - a+ 2] < |(a, )l ,
(the last inequality follows from (5)), hence the map
fe i AX M—A; (a,2) — ca+ f(x)

is a bounded modular map, ||fc||(AxM), < 1. Therefore,

Fe(a,2)" fela,2) < ((a, ), (a,2)), , (6)
for all a € A, x € M. From the estimate (6) we get
A*c*ea+ a* f(z) + f(z)*ca+ f(z) f(z) < a’a+a*g(x) + g(x)*a+ (z,z).
Taking a = —2g(x) we obtain
dg(x) cTeg(z) + f(2)"f(x) < (2, ) + 2(g(2) " () + f(x) cg(w)).

But as
G(z) " f(z) + f(x) eq(x) < g(x)"cTegla) + f(x)" f(2),

SO

2g(2) ¢ eg(e) < (e 2) + f(2)" (@) < L+ |117)(x, ),
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hence, ||g - ¢*]] < %(1 + ||f||2)1/2, and, therefore,

. . 2 1 2172
- C = ||ce = ||C < — 1 —|— .
(g - ) = llec™|| = lell” < \/5( 17117)
The last inequality is valid for all ¢ € N for which ||g|| < 1, and as ||¢|| = 1, so the inequality 1 <

%(1 +[1£11”)*/2 should be valid too, whence it follows that ||| > 1. Thus, ||f]| = ‘M/Q‘ =1. 0O

Remark that in a case when N = M’ the proposition 4.1.1 means that the map F' — Fis an
isometric inclusion M" C M’.

Proposition 4.1.2 ([53]) For all FF € M" one has (F,F) > 0 and ||F, F)|| = ||F||2

Proof: Let F € M", F # 0. Put ¢ = F(F), D = [|F]|. Let us show at first that D> € Sp(c). For
t > D consider the inner product (-, )~ on the module A x M. Since ‘F ca+ fH < |l(a, 2)||5, for all

(a,z) € A x M, the map

F,

fe i AX M—A; (a,x)HF(ﬁﬂ—l—f):ca—l—F(x)

is bounded with a norm not exceeding D (we mean here the norm defined by the inner product (-, '>F t).
Therefore

)

(ca+ F2))*(ca+ F(x)) < D*((a,2), (a.2))5 . (7)

The inequality (7) holds for all ¢ > D and taking the limit ¢ = D we obtain

(ca+ F(2))*(ca+ F(z)) < D*(D*a*a+ F(x)*a+ " F(x) + (2, z)).
Taking a = —D_Zﬁ(x) we get

F(x)*(D™%c—=1)"(D™%c = 1)F(z) < D*(—=D~?F(2)*F(x) + (z, z)),

hence, N N
F(z)* (D2 = 1)*(D72c = 1) + 1) F(x) < D*(x, x).
Suppose that D? ¢ Sp(c). Then it is possible to find number § > 0 such that

F(z)*(D™%c = 1)"(D™%c = 1)F(z) > §F(2)*F(x)

for all z € M. But then

whence we have

D2
1490
Obtained contradiction shows that D? € Sp(c). But as

< D%,

~ 12
pe=| <

= = 2
lell = [ < e | F| = e = 0,
so |le|| = D?, hence ||(F, F)|| = ||F||2 and ||{F, F')|| € Sp((F, F)). For an arbitrary element a € A we have
a*F(le)

[|acal| = =|{F-a,F-a)|| € Sp({(F - a, F-a)) = Sp(aca).

The following lemma concludes the proof.

Lemma 4.1.3 ([53]) Let an element ¢ € A be such that the inclusion ||aca|| € Sp(aca) holds for any
a€A, a>0 Thene>0. O
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The proposition 4.1.2 shows that the inner product defined on M"' satisfies the conditions (i) and (ii)
of the definition 4.1.2. Tt remains to check the condition (iii). Notice that

(F+ G, F+G)>0; (F4+1iG, F+iG) >0,
hence these expressions are selfadjoint. Then

therefore (F, ) = (G, F)". The module M" is a Hilbert A-module, as the operator norm on M coincides
(by the proposition 4.1.2) with the norm defined by the inner product. Thus, we have proved the following
theorem.

Theorem 4.1.4 ([53]) The map {-,-) : M" x M"— A defined by the formula (F,G) = F(G), F,G €
M is an A-valued inner product on /\/~l”. The norm defined by this inner product coincides with the
operator norm on M. The map F —— F is an isometric inclusion M C M'. O

Let us pass now to dual modules of the higher order. Let & € (M")’. Define then a functional fs € M’

by the formula
Fg(x) = ®(&), =eM.
Let further f € M’. Define ®; € (M")" by the formula
p(F) = (F())", FeM”
The maps ® — fp and f — ®; are A-module morphisms. Consider their composition
./\/l/—>./\/l///—>./\/l/, Fr— <I>f — fq>f. (8)
As for any © € M we have
Fo,(z) = ®s(2) = (2(f))" = f(=),

so the composition (8) is identical map, whence it follows that the map M’'— M is an isometric

inclusion and the map M"”'—s M’ is an epimorphism. Let us show, that the last map is also monomorphic.
Apply for this purpose the proposition 4.1.1 for the case N' = M. Let ® € A" = M. Then the

functional fg € M’ is a restriction on M of the functional ®, fp = <I>|/Q. Suppose that fg = 0. Then
q)|/\71H = 0, therefore the map M""—M' & — fg, is

monomorphic. Thus this map is an isometric isomorphism.

Corollary 4.1.5 For a Hilbert C*-module M one has (M") = M’ and (M) = M". O

by the proposition 4.1.1 we have ||®|| =

So, the series of dual modules M, M’ ... stabilizes on the third entry and the inclusions
M C M// — M//// C M/ — M///

are isometric. Thus the modules M and M” are Hilbert unlike the module M’, which is, generally
speaking, only Banach. Let us illustrate by examples that all possible variants can be realized:

M=M"=M; M#M' =M; M=M'#M; M#M M.

(i) Let A be a unital C*-algebra and let M = L, (A) be a free A-module with n generators. Then the
module M is autodual, therefore, M = M’ = M'.

(ii) Let A be a W*-algebra. By the theorem 3.2.1 for any Hilbert A-module M its dual module M’ is
a self-dual Hilbert module, hence M # M" = M’.

(iii) [23] Let A = Cy(0, 1] be the C*-algebra (without unit) of functions on a segment [0, 1] vanishing at
zero, M = A. Then M’ = C[0, 1], M" = Cy(0,1] and M = M" £ M’.

(iv) [23] Consider the module Cy(0, 1) of functions on the segment [0, 1] vanishing at the end points,
over the C*-algebra A = Cy(0,1]. In this case one has M’ = C[0,1], M" = Cy(0,1], that is,
MEM" M.

Definition 4.1.6 A Hilbert C*-module M is called reflexive, if M” = M.

In the following we will encounter with other examples of reflexive Hilbert modules.
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4.2 Reflexivity of Hilbert modules over K

In this section describe results of the paper [63]. Let K be the C*-algebra of compact operators acting
on a separable Hilbert space H and let KT be the C*-algebra of operators of the form ¢ = A+ K, where
AeC, Kek.

Theorem 4.2.1 ([63]) Any countably generated Hilbert Kt -module is reflexive.

Proof: According to the stabilization theorem 1.4.1 any countably generated Hilbert module is a direct
summand in the standard module I5(K 1), therefore it is sufficient to prove reflexivity of the module
l5(K*). The proposition 2.5.5 gives a description of the dual module:

N
Y Fifi
i=1

Lemma 4.2.2 If f = (f;)) € ,(K1), K €K, f- K = (f;K) € lL(K1).

LKY)Y ={f=(fi):fi€ /C+,S%P < oo}

Proof: Since the operator K can be approximated by finite-dimensional operators, it is sufficient to prove
the lemma in the case when K is finite-dimensional. Notice that the operator (/i K)*(fiK) = K*ff ;K
is a positive operator whose kernel contains Ker K and whose image is contained in Im K*. As dimIm K*
and codim Ker K are finite, the norm convergence of the series > 2, (f; K)*(fi K) follows from its weak
convergence. O

Let F € lo(Kt)". Put F; = F(e;)* € KT, where {e;} is the standard basis of [5(K1), €; € l5(KT)".
Since M C M’ for any Hilbert module M, the sequence F' = (F;) is an element of the module I5(KT)".

Let us prove that the series Y7, F*F; converges in the C*-algebra Kt to the element F(F) = (F, F).
Let K € K be a finite-dimensional operator in H. By the lemma 4.2.2

(F,F)K =(F,F-K)=Y_F/FK,
i=1

therefore,

K*(F,F)K =Y K"F{FK,
i=1

and for any £ € H

oQ

Y (K*FPFKE€) = (F, F)K¢, K¢),

i=1
where (-, ) is a (scalar) inner product on H. Let n € By (H), where By (H) is the unit ball in H. Choose
an element ¢ € H and a finite-dimensional operator K’ so that n = K’¢. Then

oQ

> _(Fin, Fm) = ((F, F)n, ).
i=1
Therefore for any
* 2
D (FFEmm) | < KE )] - il (9)
i=1

Lemma 4.2.3 Let f = (k;) € L(KT), and k; € K for all i € N. Then F(f) € K.

Proof: Due to continuity of F' and the closedness of the algebra K it is possible to assume that all
k; are finite-dimensional operators. Denote by V; C H the image of the operator k7, dimV; < co. Let
H = Hi®H> be an orthogonal decomposition of H into a sum of two closed infinite-dimensional subspaces.
Assume at first, that each of the subspaces V; lays in one of subspaces Hy or Ha. Let F(f) = K + A,
K € K, A € C. Choose a compact operator k£ with such image L C H; that dimL = oo. Replace by
zeroes those terms in the sequence (kq,ka,...) for which V; C H; and denote the obtained sequence
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by (ki, k5, ...). Then (kik, kok,...) = (ki k, k5%, .. .) because the condition k;k = 0 is equivalent to the
condition Im &} 1 Im k. Thus

Pk, Ky Yk = F(kk, Kk, .. )= F(kik kok,..) = F(ki ks, .. )k = (K + Ak,

1.e.
F(kL RS, ) = (K + M)z

As dim L = oo, so F(ki, Kk}, ...) = K’ 4+ A with some K’ € K. Interchanging subspaces H; and Ho, it is
possible to construct a sequence (k{,k%,...) such that F'(kY, k4,...) = K + A with some K" € K. Thus

(Ky, ko, ) = (K Ky )+ (KR,

hence,

F(ki,ka,..) = K'+ K" + 2,

therefore A = 0. In case of arbitrary subspaces V; is possible to find such finite-dimensional operators [;,
m;, n; that

Ki+lL=mi+n;, (I1,l...)€ lz(IC+); (My,ma,...),(n1,na,...) € lz(IC+)/,
and the image of each of operators m; and n} lays in one of the subspaces Hi, H;. O
Put F; = K;+ A\, (F,F)= K + A, where K;, K € K, A\;,; A € C. Then
FfF; = KIKi + MKF + MK+ )2
Lemma 4.2.4 5 72 [N = A

Proof: At first we show that the series > ;- | |A;|? converges. Suppose that it is not so. Put M = ||(F, F)||
and find a number N such that Zf\;l |Ai|* > M + 1. Choose ¢ > 0 to satisfy the estimate

N

Y (142 <

i=1

N | —

Choose, further, a vector £ € H with ||€]] = 1 to satisfy the inequalities

IKTKi€ll <&, [|Ki€ll <e, [K[E|<e, i=1,...,N.
Then the inequalities
00 N
* . 1
DFTREE = ) (FF& ) > M+ 3
i=1 i=1

contradict (9). So, Y7, |Ai|? < co. But it means that (A1, A2, ...) € [,(KT). Then

K4A = (F,F)=F(F,Fy,..)=F(Ky,Ks,..)+F(A1, Ao, ..)

= (K1 Ko, )+ Y FPA = FOK Ko, )+ > (K7 + M)
i=1

i=1
(F(Kl, Ky )+ K;‘/\Z») +3 I
i=1 i=1

But, as F(K1, Ka,...)+ Y ;o KA € K, we conclude that > [N =A. D

Lemma 4.2.5 ([63]) Let X be a compact Hausdorff space and let f, f, gn, g be real-valued functions
on X, n € N. Assume that the functions f,, f are continuous, that the functions f, + ¢, and g, are
nonnegative, that the function g is bounded, that the series 22021 gn uniformly converges to the function g,
and that the seriesy - (fn+gn) converges pointwise to the function f+g. Then the seriesy o (fn+gn)
untformly converges to the function f+g¢. 0O
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Let X = Bi(H) be the unit ball of H with the weak topology, £ € X. Put

Fa€) = (KX EKn + M KD+ X ER)EE),  ga(€) = I\l €17, F(E) = (KE,6), g(&) =X [[€])”.

The conditions of the lemma 4.2.5 are satisfied, so the series Y ;o (F F;¢, ) uniformly converges on X
to the function ((F, F)¢, &), therefore the series Y ;- FF; converges to (F, F) in the algebra Kt and,
therefore, ' € [3(KT). O

4.3 Reflexivity of modules over C'(X)
In this section we describe results of the papers [47, 64].

Definition 4.3.1 ([64]) A compact Hausdorff space X is called an L-space if for an arbitrary sequence
f1, f2,... of continuous functions on X converging pointwise to some bounded function f the set of
continuity points of the function f is dense in X.

Examples of L-spaces are any compact subsets of finite-dimensional Euclidean space [1]. Infinite
Stonean spaces are not L-spaces.

Definition of L-spaces allows us to give a description of bidual Hilbert modules over algebras of
functions on such spaces.

Theorem 4.3.2 ([47, 64]) Let A= C(X), where X is an L-space. Then any countably generated Hilbert
A-module is reflexive.

Proof: According to the stabilization theorem 1.4.1 any countably generated Hilbert module is a direct
summand in the standard module H 4, therefore it 1s sufficient to prove reflexivity of the module H 4.
The proposition 2.5.5 gives a description of the dual module:

Hy ={f= (/i) ifi(t)EC(X),SIJJVP < oo}

Z FAGIE

Since the sequence of partial sums Zf\;l |fi(t)|* is monotone and bounded at each point ¢ € X, the

corresponding series converges pointwise to a bounded function. By the supposition the set of points of
continuity of the limit function >_:2, | fi(¢)|? is dense in X. Let us fix a point of continuity ¢y € X. Let
A(t) be a continuous function on X, equal to 1 at the point ¢y. For F' € H'{ we have

F(fA) =F (Zeifr/\) + F ((f_zeifi) /\) ; (10)

where {e;} is the standard basis in H4 C H/,. The element Zf\;l ei fi A belongs to the module H4,

therefore
N N
F (Zem : A) =Y Fifi A
i=1

i=1
where by F; = F;(t) we denote F(€;)*. Let w(f) denote the least upper bound of oscillation of the function
Zi:l |f:(t)]?. Then, obviously,

N 2
w(f) = lim sup Z |£:(¥) _J\;I_EI;O Hf—zeifi
i=1

Let us choose an arbitrary ¢ > 0 and a function A(¢) such that on the support Supp A(¢) the oscillation
w(f) is less than ¢2. Then find such N that for all N > N the inequality

2

NI
H F=Y el | A <2’ (11)
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holds. Tt follows from inequalities (10),(11) that at the point ¢; (where A(tg) = 1) one has

|F(F)(to) = D F7(to) fi(to)| < [|F]| - 2¢.

i=1

for all N > N. Thus, the series > .2, F*(¢)f;(¢) converges to a continuous function F(f)(¢) at all points
to of continuity of the sum of the series Y ;- |f;(¢)|?. Since H’{ C H',, the series

Z FX () Fi(t) (12)

is also convergent at each point and coincides with the continuous function (F, F)(t) = F(F')(t) at each
point of continuity. Denote by E C X the set of continuity points of the series (12). Let now ¢y be
some point of discontinuity of the series (12). Without loss of generality (multiplying by some continuous
function, if necessary) it is possible to assume that there is the sequence of points ¢, € F, converging to
the point ¢o such that (F, F)(t,) = 1 and >_;2, |Fi(to)|* < 1. Choose functions h;(t) € C(X) to satisfy
conditions

(i) hi(to) = Fi(to); [hi(t)| < [Fi(2)];

(i1) h = (hi) € Ha, i.e. the series > o~ |h;(t)|* is uniformly convergent.
Define a function A(t) on X by conditions:

(1) 0<A() <1, Altan) =0, A(tap41) =1,

(i1) Outside the point ¢y the function A(t) is continuous.

Consider the element
Fi(t) = hi(t) + AQ@)(Fi(t) — hi(t)).

It can be easily checked that the functions f;(¢) are continuous on the whole X. Moreover, as |f;(t)] <
|F;3(t)], so we have f = (f;) € H';. Then

FNO) =(F N1 = Z F7(0)hi(t) + A1) Z FF(O)(Fi(t) = hi(t))-

The series -
> F(t)hi(t) (13)
i=1

is uniformly convergent because h € H4. On the set £ C X the series
> E(O(F() = hilt)
i=1

converges uniformly to the continuous function (F, F'— h)(¢) which is continuous on the whole X. Then

for ¢t € E/ one has
(B, 1)(t) = (F,h)(t) + A ((F, F) () = (F, h)(1)),

and for each t,
(B, ) (tn) = (F, h)(tn) + Altn) (1 = (F, h)(tn)). (14)

The functions {F, f)(t) and (F, h)(t) are continuous, and as the series (13) is uniformly convergent, so
(F,h)(to) = > |Fslto)]” < 1.
i=1

But it contradicts continuity of the function (F, f)(¢), as due to our choice of the function A(t) the limits
of the right and the left part of the equality (14) are different for even and for odd n. O
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4.4 Hilbert modules related to conditional expectations of finite index

In this section we describe results of the paper [25]. Let F : A — B C A be an exact conditional
expectation on a C*-algebra A, i.e. a projection of norm one onto a C'*-algebra B such that the condition
E(z*z) =0,z € A, implies = 0.

A conditional expectation £ : A — B C A is called a conditional expectation of algebraically finite
inder if there exists a set of elements {u1, ..., u,} C A such that forany v € Az =Y ", w;E(ufz). Then
the element Ind(F) = >_°_, u;u} of the center of the C*-algebra A is called the wagztéwn of E. Ind(F)
does not depend on a choice of the elements {uy,...,un} C A, is positive, and Ind(E) > 14 [69, 7]. Tt is
shown in [7] that the algebraic finiteness of the index is equivalent to the property of A to be a projective
finitely generated C*-Hilbert module over the C*-algebra B.

It is also interesting to consider another class of conditional expectations £ : A — B C A for which
there exists a number K > 1 such that the map (K - F' —id4) is a positive element of the C*-algebra
A. Such conditional expectations are called conditional expectations of finite index and they have the
following property:

Proposition 4.4.1 Let A be a C*-algebra and let ¥ : A — B C A be a conditional expectation for which
the set of fired points coincides with B. Then there exists a finite number K > 1 such that the map
(K - E —1dy) s positive iff E is exact and the (right) pre-Hilbert B-module {A, E((-,-),)} is complete

with respect to the norm ||E((-,-), )||1/2 (where (a,b) , = a*b for a,b € A).

Proof: If the algebra A is complete with respect to the norm [|E((-,-), )||1/2 then there exists such
number K that the inequality K||E(x*x)|| > ||#*«|| holds for any # € A. For a € A, ¢ > 0 put z =
a(e + E(a*a))~'/?. Remark that

(e + E(a*a)™/? - E(a"a) - (¢ +
a

whence the inequality K -14 > (e 4+ E(a*a))~/?-a* 6—|—E(a a))~1/? follows. Multiplying both parts of
it by (e + E(a*a))'/?, we conclude that K - (6—|—E(a )) > a*a for all a € A, € > 0. The inverse statement
obviously follows from the inequality ||F(z)|| > K~ 2||l‘|| valid for any x € A. O

E(a*a)™? <14,

Notice that unlike algebraic finiteness of the index, in the case of conditional expectation of a finite
index the Hilbert module {4, E({-,-),)} can be infinitely generated.
Define
K(E)=inf{K : (K - E —ida)positively inA}.
Let us call K(E) the characteristic number of the conditional expectation F.
Let X be a compact Hausdorff space with an action of a group GG. Denote the C*-algebra of G-invariant
continuous functions on X by C'“(X), and stabilizer of a point # € X denote by G, = {g € G : gz = z}.

Definition 4.4.2 A continuous action of group G on X is called uniformly continuous if for each point
z € X and for each its neighbourhood U, there is the neighbourhood V, of the point x such that
g9(Vy) C Uy for each g € Gy

Remark that the continuous action of compact group satisfies this definition.

Definition 4.4.3 Let a group G acts uniformly continuously on a compact Hausdorff space X in such
a manner that the length of each orbit #Gx does not exceed some number k € N. Define a conditional
expectation Eq : C(X) = Eq(C(X)) C C(X) by the formula

o) = g L Je).(reX),

.‘]aeG/G
Lemma 4.4.4 ([25]) The conditional expectation Eg is well-defined.

Theorem 4.4.5 ([25]) Let a group G uniformly continuously acts on a locally compact Hausdorff space X
so that k := max{#(Gz) : # € X} < +00. Then the characteristic number of the conditional expectation
FE¢ satisfies the equality

K(Eg)=k:= 1;11623?#((}1‘)

58



Proof: Let z € X be an arbitrary point and let k, = #Gz. Then

KEq(f)x = kki © Y Flgaz) = f(2),

9o €EG /Gy

where f is an arbitrary non-negative function in C(X). Let us assume that K(Fg) < k and choose such
point z that k; > K(E¢). Then it is possible to choose a small enough neighbourhood U, of the point
x so that ¢;Uy, Ng;U, = O (¢ # j) for the set {g1 = 1,92,...,9m} = G/Gy. Let f be a continuous
non-negative function with the support lying inside U,. Then

K(EG)EG(f)x:K(EG)ki. > Flga) < f(x).
T g.€G/G,

Contradiction with the definition of K(FEq) completes the proof. O

Theorem 4.4.6 Let X be a compact Hausdorff space and let G be a group uniformly continuously acting
on X. If all orbits of the action of G have the same finite number of points then the conditional expectation

EN0) = 26 > )

is well-defined on C(X), and the Hilbert C%(X)-module {C(X), E((-,-))} is finitely generated and pro-

gective.
Proof: The idea of the proof is contained in [69], but beforehand we require two technical lemmas.

Lemma 4.4.7 Let X be a compact Hausdorff space with a uniformly continuous action of a group G' and
let all orbits contain equal finite number of points. Then for any point © € X and for any element g € G,
one can find an open neighbourhood U, of a point x on which g acts tdentically.

Proof: Let us denote the length of orbits #(Gx) by n. Let #1,...,2, € X be the orbit of the point #
and let h; € GG be such elements that h;z = x;. Choose gg € (G and assume that each neighbourhood U,
of the point # contains some point y € U, such that goy # y. Fix neighbourhoods Uy, of the points z;
satisfying condition Uy, NU,, = 0 for i # j. Then we can find a neighbourhood V,, C U, of the point x such
that h;(V;) C Uy, . Since the group G acts uniformly continuously, it is possible to find a neighbourhood
Wy C V, of the point « such that g(W;) C V, for each ¢ € G,. If y € W, and goy # y then the orbit Gy
of this point includes not less than n + 1 different points {h;y € Uy, : i =1,...,n}U{y, goy € Vi }. The
obtained contradiction proves the lemma. O

Lemma 4.4.8 Under the suppositions of the lemma 4.4.7 for any point © € X one can find a neighbour-
hood V,, of this pownt such that the action of the subgroup G, on V, s the identity mapping.

Proof: We should show that a neighbourhood U, of the lemma 4.4.7 can be choosen for all ¢ € G,
simultaneously. For each g € (G, put

Uslg) =1y € X : gy = y}.

Suppose the contrary, i.e. that the set Nyeq, Ur(g) does not contain any neighbourhood of the point . It
means that any neighbourhood U, of the point « contains some point z such that for some g, € G, we have
g5z # z. Consider a neighbourhood V;; of the point # and neighbourhoods {Uy,, } for fixed representatives
{hi # e} € G of cosets in G/G; such that their intersections are empty and h;(Vy) € Up,,p. As in the
proof of the lemma 4.4.7 we find a neighbourhood W, C V, of the point x such that ¢(1,) C V, for each
g € Gy Put Uy = Ugeg, G(Wy) C Vo It is a Gp-invariant open neighbourhood of the point & € X. The
supposition ¢,z # z for some z € Uy, g, € G means, that the orbit of the point z consists of not less
than n + 1 points. O
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Let U, C V., be a neighbourhood of the point = such that the action of GG, on V, is an identity
mapping. Then one can find a function f, € C'(X) such that supp fy C V; and f;|r, = 1. For each ¢ € G
one has either (gV,) NV, = 0 or gV, = V,, therefore

f ag(fe)? if gr =,
ag(fx)fx—{ 90 lfgl‘;él‘,

where « denotes the action of G on functions, ay(f)(z) = f(g~ ). Let {Us,, ..., U, } be afinite covering
of the space X by sets of the above form. Put

k
=> fe21, Ui=v ') P ec(X).
i=1

Notice that if we take one element g; in each coset G/G, then by the lemma 4.4.4 the map

Ea(f)(z) =

is well-defined for all € X, f € C'(X) and it is a conditional expectation on C'(X). Moreover, for each
function f € C(X) one has

n

Zul Eg(u nZUZ i) | =1 Eoluju) =di;,

i=1

—_

hence the set {uy,...,u,} is a basis of the Hilbert C'“(X)-module {C(X), Eg((-,-))}. Therefore, this
Hilbert module 1s finitely generated and projective. 0O

The theorem 4.4.6 generalizes results of [69] and shows that if all orbits consist of equal finite number
of points then the corresponding conditional expectation is of algebraically finite index. From finite
generatedness and projectivity it follows that the Hilbert module A = {C'(X), E({-,-))} is autodual. In
the case of a finite index (when K(Fg) < oo and the pre-Hilbert module A is complete) we can not
expect that this module should be self-dual. However sometimes this module is reflexive, i.e. A” = A,
where A’ is the dual Banach C'“(X)-module of bounded C'“(X)-homomorphisms from A into C'%(X).

Theorem 4.4.9 ([25]) Let the group G uniformly continuously acts on a compact Hausdorff space X.
Suppose that all orbits consist of not more than n points, and that the number of points, for which the
length of their orbit is less than n, is finite. Then the Hilbert C%(X)-module {C(X), Ec({-, )} is reflexive.

Proof: Describe at first the dual Banach C'%(X)-module A’. Let zy,..., 2, be the points with orbits
shorter than n. It is possible to choose open neighbourhoods Us, . .., Uy, of these points in such a way that
each neighbourhood U; would be invariant with respect to the action of the subgroup G, and if for some
h € G one has hx; = z; then hU; = U;. Denote by Y the G-invariant compact set X \ (U1 U ... UUy).
Let F € A’ be a C%(X)-valued functional on the module A. Consider its restriction on the Hilbert
C%(Y)-module {C(Y), Eg({-,-))}. For a function ¢ € C(Y) we take its extension § € C'(X) and define
Fly by the equality Fly(g) = F(9)|y. This definition does not depend on the choice of an extension g. If
Y’ DY is also a compact G-invariant subspace not containing the points 1, ..., #y, then (Fly/ )|y = Fly.
Since the orbit of each point of the set ¥ has constant length, by the theorem 4.4.6 the C'“(Y)-module
{C(Y), Eg({-,-))} is finitely generated and projective, therefore auto-dual. Denote by C(X\{#z1,...,2m})
the set of continuous functions on the noncompact space X \ {z1,..., 2, }. The restriction on this space
defines a map

A~ (X \ {21, .. em)). (15)

It is easy to verify that the map (15) is an monomorphism.

Let us study local properties of functionals from A’ close to the points z1,...,%,,. Let zg be one of
these points. It has such neighbourhood U, that if gzo = xo then ¢U,, = U,,. The group G, contains
a normal subgroup G of the elements, which do not move points from the neighbourhood U,,. Choose
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a representative g; in each coset G/Gy,. Then outside the point ¢ the action of the functional F' € A’
can be written as

1 n
r =— F*(g;%) - f(gi®), 16
(D)= 5 D2 i) i) (16)
and this action can be continuously extended to the point zg. Let o = 2°, 2%, ..., 2~ be the orbit of

the point xg. Then it is possible to write the sum (16) in the form

1 k-1

F(f)(l‘)zgz | > Fgix) - flgix)

Passing to the limit (which exists by supposition), we obtain

k-1

F = fim 032 30 Pl s |
J= 1:g;co=x7

hence there exists (for f =1 € C(X)) the limit

1.
wm 2 o)
1:¢g;xo=x7

for any x € X \ {#1,..., zn}. Remind that the function F'(z) is defined only outside of the point z¢. If we
would like the action F' on the Hilbert C'“(Y)-module {C(Y), Ec({-,-))} to be of the form (16) on the
whole X, it is necessary to define the function F'(z) at the point 2 by the equality

1.
F(rg) = — lim > Flgn). (17)
i:g;xo=ax7

To complete the proof we need the following lemma.

Lemma 4.4.10 The module A’ is isomorphic to the module of all bounded functions F(x) on X which
are continuous on X \ {x1,...,xn}, and satisfy the condition (17).

Proof: We need to show that the image of the monomorphism (15) consists of bounded functions. Suppose
the inverse. Then there exists such point # that |F(Z)| > n-||F||, where ||F|| is the norm of F in the dual
Banach C'“(X)-module A’. Moreover, it is possible to choose a neighbourhood U of the point z so that
Uz N g;Uz = B for those elements of the group G, for which ¢,z # . Consider such function f € C(X),
that f(z) = 1 and supp f C Uz. Then it follows from the equality (16) that

1
F((@) =~ F*(@) - (7).
and the inequality . .
1E()@)| = 17 (@)] -1 f(@)] = ~[F(@)] > [17]],
gives a contradiction. 0O

Now, having the above description of the dual module A’, it is possible to describe the bidual module
A”. Since there exists the canonical inclusion A” C A’, and the inner product on A can be in a natural
way extended to an inner product on A” (see Theorem 4.1.4), making it a Hilbert module, it is sufficient
to verify, on which functions from A’ it is possible to extend the C'“(X)-valued inner product. Consider
a function F from A’ N A”. Adding to it (if necessary) a continuous function from A we can suppose that
F(zo) = 0. Then the C'%(X)-valued inner product of F by itself is an element of C'“(X) having the form

(F.F)) = B(F@)) = 3 |Fgm)P (18)

i:g;xo=a’
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for all x € X. But, as (F, F')(x) = 0, it follows from the supposition F € A” that

lim F(g;z) =0

T—Tg

for each summand of the equality (18). Therefore, we obtain from (17) that the function F is continuous
at the point zg, hence the module A is reflexive. O
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