
Hilbert C�� and W ��Modules and

Their Morphisms

V� M� Manuilov� E� V� Troitsky

CONTENTS

�� Basic de�nitions �
���� C��algebras �
���� Pre�Hilbert modules �
���� Hilbert C��modules �
���� The standard Hilbert module HA �
�� Operators on Hilbert modules ��
���� Bounded operators and operators admitting an adjoint �	
���� Compact operators in Hilbert module ��
���� Complementable submodules and projections in Hilbert C��modules �

���� Full Hilbert C��modules ��
���� Dual modules� Self�duality �	
��
� Banach�compact operators ��
���� C��Fredholm operators� Index ��
���� Representations of groups on Hilbert modules ��
�� Hilbert modules over W ��algebras 	�
���� W ��algebras �	
���� Inner product on dual modules ��
���� Hilbert W ��modules and dual Banach spaces ��
���� Properties of Hilbert W ��modules ��
���� Topological characterization of self�dual Hilbert

W ��modules �

��
� Fredholm operators over W ��algebras ��
	� Re
exive Hilbert C��modules ��
���� Inner product on bidual modules �	
���� Re�exivity of Hilbert modules over K� ��
���� Re�exivity of modules over C
X� �

���� Hilbert modules related to conditional expectations of �nite index ��

Hilbert C��module is a natural generalization of a Hilbert space arising under replacement of the �eld
of scalars C by a C��algebra� For commutative C��algebras such a generalization was for the �rst time
discribed in the work of I� Kaplansky ��	�� however the noncommutative case looked at that time like a
complicated one for study� The general theory of Hilbert C��modules has appeared �� years ago in the
basic papers of W� Paschke ���� and M� Rie�el ��
�� This theory has proved to be a very convenient tool
in the theory of operator algebras� allowing to study C��algebras by studying Hilbert modules over them�
In particular� a series of results about such classes of C��algebras as AW ��algebras and monotoneously
complete C��algebras was obtained ����� In terms of Hilbert modules the important notion of Morita�
equivalence was formulated for C��algebras ���� ���� This notion has also applications in theory of group
representations� It turned to be possible to study group actions with the help of Hilbert modules arising
from such actions ���� ���� Some results about conditional expectations of �nite index ��� 
�� and about
completely positive maps of C��algebras ��� were also obtained�

The theory of Hilbert C��modules may be considered also as a noncommutative generalization of
the theory of vector bundles ���� �
�� This was the reason for Hilbert modules to become a tool in
topological applications � namely in index theory of elliptic operators� in K�theory and in KK�theory
of G� G� Kasparov ���� �
� ��� ��� ��� ��� 

� and in noncommutative geometry in whole ���� �
��

Among other applications it is necessary to emphasize the theory of quantum groups and unbounded
operators ��	� ��� �� 
� and some physical applications ���� ���

�



Alongside with these applications the theory of Hilbert C��modules itself has been developed too� A
number of results about the structure of Hilbert modules and about operators on them was obtained ����
��� ��� ��� ��� 
��� Besides that an axiomatic approach in theory of Hilbert modules based on the theory
of operator spaces and tensor products was developed ��	� ����

The detailed bibliography of the theory of Hilbert C��modules can be found in �����
A signi�cant part of results presented here was only announced in the literature or the proofs were

discussed only in brief� We have tried to �ll such lacunae� We can not discuss here all aspects of the
theory of Hilbert modules� but we have tried explicitly to explain the basic notions and theorems of this
theory� a number of important examples� and also some results� related to the authors� interest�

The major part of the presented material formed the content of lecture course presented by the authors
at the Department of Mechanics and Mathematics of Moscow State University in ���
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� Basic de�nitions

��� C��algebras

The basic information about C��algebras can be found in the books ���� ��� 
�� ���� We will present some
results on C��algebras� which will be necessary for us further on�

Remind that an involutive Banach algebra is called a C��algebra� if for each its element a the following
relation

ka�ak � kak�

is ful�lled� Any such algebra can be realized as a norm�closed subalgebra of the algebra of bounded
operators B
H� on Hilbert space H� We do not assume the presence of the unity element in C��algebras�
By A� we denote the C��algebra obtained from C��algebra A by unitization 
taking direct sum with
complex numbers��

We need also the notion of a positive element of a C��algebra� First of all we remind that the spectrum
of an element a of a unital C��algebra is the set Sp
a� of complex numbers z such that a � z � � is not
invertible� If a C��algebra A has no unity� then the spectrum of the element a � A is its spectrum in the
C��algebra A� � A� Spectrum is a compact subset of C� An element a � A is called positive 
we write
a � 	�� if it is Hermitian� i� e� satis�es the condition a� � a� and if one of the following equivalent ����
��
��� conditions is carried out


i� Sp
a� � �	����

ii� a � b�b for some b � A�


iii� a � h� for some Hermitian h � A�

The set of all positive elements P�
A� forms a closed convex cone in A and P�
A� 	 
�P�
A�� � 	�
Among the elements h existing by the item 
iii� there exists only one positive� called the positive square
root of a 
we write h � a�����

We remind also that a linear functional � � A�
C is called postive if �
a� � 	 for any positive
element a � P�
A�� A positive linear functional is called a state if k�k � �� We have kak � sup�
a��
where a � 	� and sup is taken over all states�

A C��homomorphism of an algebra A into the C��algebra B
H� of all bounded operators on a Hilbert
space H is called a representation� A vector � � H is called cyclic for the representation � � A�
B
H��
if the set of all vectors of the form �
a��� a � A� is dense in H� The vector � � H is called separating for
the representation � � A�
B
H�� if the equality �
a�� � 	 implies a � 	�

�



We can associate with each positive linear functional � on a C��algebra A a unique 
up to unitary
equivalence� representation �� of the algebra A on some Hilbert space H� and a vector �� � H� such that
�
a� � 
��
a���� ��� for all a � A and the vector �� is cyclic� The construction of such a representations
is called the GNS�construction�

An approximate unit of a C��algebra A is an increasing net e� � A� � � A� such that ke�k � � and
limka� ae�k � 	 for any a � A� Each C��algebra has an approximate unit e� such that e� � 	 and
e� � e� for � � � �����
De�nition ����� A C��algebra possessing countable approximate unit� is called 	�unital�
De�nition ����� An element h � A is called strictly positive if for any positive nonzero � 
or� equally�
for any state� one has �
h� 
 	�
Remark ����� These two conditions are equivalent� It is possible to consider ei � 	� Then h ��

P
i ei��

i

is strictly positive� Conversely� ei �� h��i is a countable approximate unit� Separable algebra always
satis�es these conditions� The details can be found in �����

We will often use the following statements�

Lemma ����	 ���� Lemma ������ Let x� y and a be elements of a C��algebra A such that a � 	 and

x�x � a�� yy� � a�� �� � 
 ��

Then the sequence un � x�
��n� � a�����y is norm convergent in A to such u� for which kuk �
ka���������k�
Proof� Put dnm �� �
��n� � a����� � �
��m� � a������ Then

kun � umk� � kxdnmyk� � ky�dnmx�xdnmyk � ky�dnma�dnmyk � ka���dnmyk� �

� ka���dnmyy�dnma���k � ka���dnma�dnma���k � kdnma�������k��
Studying the convergence of a monotone sequence on a spectrum a� we obtain by the Dini theorem the
uniform convergence of

�
��n� � t�����t������� �
 t���������� t � Sp
a��
Therefore� kdnma�������k 
 	� so that by the Cauchy criterion fung is norm convergent to an element
u � A� Then reasoning as above we obtain

kunk � kx�
��n�� a�����yk � ka����
��n� � a�����a���k � ka���������k�
So that kuk � ka���������k� �

Proposition ����� ���� Prop� ������ Let x and a be elements of a C��algebra A such that a � 	 and

x�x � a� For any 	 
 � 
 �
� there exists an element u � A such that kuk � ka �

�
��k and x � ua��

Proof� Let us de�ne un �� x�
��n��a��
�
� a

�
�
��� By Lemma ����� fung is norm convergent to an element

u � A such that
kuk � ka �

�
����������k � ka �

�
��k�

Further�

kx� una
�k� � kx
�� �
��n� � a�����a����k� � ka���
�� �
��n� � a�����a����k� �
 	

for n �
� by the Dini theorem being applied to appropriate functions on the spectrum� Thus� x � ua��
�

�



��� Pre�Hilbert modules

LetM be a module over C��algebra A� The action of an element a � A onM we denote by x � a� where
x �M�

De�nition ����� Pre�Hilbert A�module is a 
right� A�module M equipped with a sesquilinear form
h�� �i �M�M�
A satisfying the following properties


i� hx� xi � 	 for any x �M�


ii� hx� xi � 	 only in the case� when x � 	�


iii� hy� xi � hx� yi� for all x� y � M�


iv� hx� y � ai � hx� yia for all x� y �M� a � A�

The map h�� �i is called an A�valued scalar �or inner� product�

Let us consider a few examples�

Example ����� If J � A is a right ideal� then J can be equipped with the structure of pre�Hilbert
A�modle if we de�ne the inner product of elements x� y � J by the equality hx� yi �� x�y�

Example ����� If fJig is some countable set of right ideals in C��algebra A� then the linear space

M of sequences 
xi�� xi � Ji� satisfying the condition
P

i kxik� 
 �� becomes a right A�module if

xi� � a �� 
xia� for 
xi� �M� a � A� and becomes a pre�Hilbert A�module if we de�ne the inner product
of elements 
xi�� 
yi� �M by the equality h
xi�� 
yi�i ��

P
i x
�
i yi�

Let K be a right A�module equipped with a sesquilinear map ��� �� � K�K�
A� satisfying all properties
of De�nition ����� except 
ii�� Put

N �� fx � K � �x� x� � 	g�
For each positive linear functional � on the C��algebra A the map 
x� y� 

 �
�x� y�� is a 
degenerate�
inner product on K� and hence the set N� � fx � K � �
�x� x�� � 	g is a linear subspace in K� By taking
the intersection of all such subspaces we obtain that N � 	�N� is also a linear subspace in K� From
properties 
iii� and 
iv� of De�nition ����� it follows that N � A � N � therefore N is a submodule in K�
The quotient moduleM � K�N is equipped with the obvious structure of a pre�Hilbert A�module with
the inner product hx�N� y � N i �� �x� y��

Let M be a pre�Hilbert A�module� x �M� Put kxkM �� khx� xik���� We will omit the indexM if it
will not lead to a confusion of norms�

Proposition ����	 
����� The function k�kM is a norm on M and satis�es the following properties


i� kx � akM � kxkM � kak for all x �M� a � A�


ii� hx� yihy� xi � kyk�M hx� xi for all x� y � M�


iii� khx� yik � kxkM kykM for all x� y �M�

Proof� For any positive linear functional � on A the function x 

 �
hx� xi���� de�nes a seminorm on
M� For each x � M

kxkM � khx� xik��� � supf�
hx� xi����g�
where the supremum is taken over all states � on A� Therefore k�kM is a seminorm� and by the property

ii� of De�nition ����� k�kM is a norm onM� Statement 
i� follows from the equality

kx � ak�M � khx � a� x � aik � ka�hx� xiak � kak� khx� xik � kxk�M kak� �
To prove the statement 
ii� we will take x� y � M and a positive linear functional � on A� Applying the
Cauchy�Bunyakovskii inequality for the 
degenerate� inner product �
h�� �i� onM we obtain

�
hx� yihy� xi� � �
hx� y � hy� xii� � �
hx� xi���� � �
hy � hy� xi� y � hy� xii����
� �
hx� xi���� � �
hx� yihy� yihy� xi���� � �
hx� xi���� � khy� yik��� ��
hx� yihy� xi�����

�



Thus� for any positive linear functional � we have �
hy� xihx� yi� � kyk�M � �
hx� xi�� Therefore� the
statement 
ii� is proved� It evidently implies the statement 
iii�� �

The inequality 
ii� 
and also its concequence � the inequality 
iii� � of Proposition ����� we will call
the Cauchy�Bunyakovskii inequality for Hilbert modules�
Remark ����� For any C��pre�Hilbert module� or more precisely� for any sesquilinear form h�� �i� the
following polarization equality is obviously satis�ed

�hy� xi �
�X

k��

ikhx� iky� x � ikyi for all x� y � M�

��� Hilbert C��modules

De�nition ����� An A�moduleM being at the same time a Banach space with a norm k�k satisfying
the inequality kx � ak � kxk kak� x �M� a � A� is called a Banach A�module�

De�nition ����� A pre�Hilbert A�moduleM� which is complete with respect to the norm k�kM� is called
a Hilbert C��module�

If M is a pre�Hilbert A�module then the action of the C��algebra A and the inner product on M
extend to the completion fM� which thus becomes a Hilbert module� Let us consider some examples�

Example ����� If J � A is a right ideal� then the pre�Hilbert module J is complete with respect to the
norm k�kJ � k�k� In particular� the C��algebra A itself is a free Hilbert A�module with one generator�

Example ����	 If fMig is a �nite set of Hilbert A�modules� then it is possible to de�ne their direct
sum �Mi� The inner product on �Mi is de�ned by the formula hx� yi ��

P
i hxi� yii� where x � 
xi�� y �


yi� � �Mi� The direct sum of n copies of a Hilbert ModuleM we will denote byMn or Ln
M��

Example ����� If fMig� i � N� is a countable set of Hilbert A�modules then it is possible to de�ne
their direct sum �Mi� We shall de�ne the inner product on the A�module �Mi of all sequences x �

xi� � xi � Mi such that the series

P
i hxi� xii is norm convergent in the C��algebra A� by the formula

hx� yi ��
X

i
hxi� yii for x� y � �Mi�

Let us show that the mentioned series converges� From the convergence of series
P

i hxi� xii and
P

i hyi� yii
it follows that for any � 
 	 there exists a number N such that for all n 
 	 the following estimate holds�����

N�nX
i�N

hxi� xii
����� 
 ��

�����
N�nX
i�N

hyi� yii
����� 
 ��

Then �����
N�nX
i�N

hxi� yii
����� �

�����
N�nX
i�N

hxi� xii
����� �
�����
N�nX
i�N

hyi� yii
����� 
 ���

This proves that the inner product is well�de�ned�

Let us verify completeness of the module �Mi� Let x
�n� � 
x

�n�
i � � �Mi be a Cauchy sequence�

Then for any � 
 	 there exists a number N such that for all n�m � N�����X
i

hx�n�i � x
�m�
i � x

�n�
i � x

�m�
i i

����� 
 �� 
��

Since all summands in 
�� are positive� the inequality���hx�n�i � x
�m�
i � x

�n�
i � x

�m�
i i

��� 
 �

�



holds for each number i separately� But then the sequences x
�n�
i � Mi are the Cauchy sequences� and

they have limits xi � limx
�n�
i � Mi� Let us verify that a series

P
i hxi� xii is norm convergent in A� Let

us �x � 
 	� There exists a number n 
 N such that the estimate 
�� is valid� Let us choose a number K
satisfying the condition �����

�X
i�K

hx�n�i � x
�n�
i i
����� 
 ��

Then for any k 
 	 we have�����
K�kX
i�K

�
hx�m�

i � x
�m�
i i� hx�n�i � x

�m�
i � x

�m�
i i� hx�m�

i � x
�n�
i � x

�m�
i i� hx�n�i � x

�n�
i i
������

�

�����
K�kX
i�K

hx�n�i � x
�m�
i � x

�n�
i � x

�m�
i i

����� �
�����
�X
i��

hx�n�i � x
�m�
i � x

�n�
i � x

�m�
i i

����� 
 ��

Therefore������
K�kX
i�K

hx�m�
i � x

�m�
i i

����� 
 ���

�����
K�kX
i�K

hx�n�i � x
�m�
i � x

�m�
i i

����� �
�����
K�kX
i�K

hx�m�
i � x

�n�
i � x

�m�
i i

�����
� ��� �

�����
K�kX
i�K

hx�n�i � x
�m�
i � x

�n�
i � x

�m�
i i

�����
��� ���hx�m�

i � x
�m�
i i

������
� ��� �����

���hx�m�
i � x

�m�
i i

������ �
Now by solving the square inequality� we obtain that�����

K�kX
i�K

hx�m�
i � x

�m�
i i

����� 
 
� �
p
���� 
 ��� 
��

Passing in the inequality 
�� to the limit m
�� we obtain that�����
K�kX
i�K

hxi� xii
����� 
 ���

This proves that the series
P

i hxi� xii is norm convergent�
The direct sum of a countable number of copies of a Hilbert moduleM we shall denote by l�
M� or

HM� The Hilbert C��module l�
A� 
other denotation is HA� we call the standard Hilbert module over A�
If the C��algebra is unital then the Hilbert module HA possesses the standard basis feig� i � N� where
ei � 
	� � � � � 	� �� 	� � � � � 	� � � �� with the unit at the i�th place�

Example ����� Let B � A be a C��subalgebra of a C��algebra A having the common unit� Let us
assume that there exists a linear map E � A�
B not increasing norms and being a projection� that is
E� � E� Such a map is called a conditional expectation fromA to B� Conditional expectation is a positive
map� i�e� E
a�a� � 	 for all a � A� and it satis�es the equality

E
b�ab�� � b�E
a�b� for a � A� b�� b� � B


see �
���� A conditional expectation is called exact� if for any positive element a � P�
A� the equality
E
a� � 	 implies a � 	� In the case when the conditional expectation is exact� it is possible to introduce
the structure of a pre�Hilbert B�module on the C��algebra A by putting

hx� yi � E
x�y�� x� y � A�

We will give a condition for this module to be a Hilbert module 
i�e� to be complete� in the section ����






Let N � M be a closed submodule of a Hilbert moduleM� We de�ne the orthogonal complement
N� by the equality

N� � fy �M � hx� yi � 	 for all x � Ng�
Then N� is a closed submodule of the Hilbert moduleM too� However� the equalityM � N �N� is
ful�lled not always� as shows the following

Example ����� Let A � C�	� �� be the C��algebra of all continuous functions on the segment� Let us
consider in the Hilbert A�moduleM � A the submodule N � C�
	� �� of functions� vanishing at the end
points of the segment �	� ��� Then� obviously� N� � 	�

If M is a Hilbert A�module then we denote by M � A the closure in M of the linear span of the
elements of the form x � a� x �M� a � A�

Lemma ����� M�A �M�

Proof� Let e� � A be an approximate unit� Then for any x �M
kx� x � e�k� � khx� x � e�� x� x � e�ik � 
� � ke��k� khx� xi � hx� xie�k 
 	�

that proves that the elements of the form x � e� are dense inM� �

We will often use the following useful statement�

Lemma ����� For any x � M
x � lim

���
xhx� xi
hx� xi� �����

Proof� Let hx� xi � a� then

kxhx� xi
hx� xi� ���� � xk� � khx
hx� xi
hx� xi� ���� � ��� x
hx� xi
hx� xi� ���� � ��ik �
� ka
a�
a� ���� � �a
a� ���� � ��k � ka�
a� ���� � �a�
a� ���� � ak �
 	�

because the following inequalities hold under the condition t � 	

jt�
t � ���� � tj �
�����t
��

t

t� �

��

� �
	����� �

����t���� � ��t
t � ���

����� � �

�����t � �t�
t� ���

���� � �
��� � �� �
�

�
�

and

jt�
t� ���� � tj �
���� t�

t� �

���� 
 �� �

The following statement is an analog of polar decomposition for Hilbert modules� We will see below
that� as well as in the case of algebras� the exact polar decomposition exists only in the case of Hilbert
modules over W ��algebras�

Proposition ������ 
����� Let M be a Hilbert A�module� x � M� and 	 
 � 
 ���� Then there exists
an element z �M such that x � z � hx� xi��
Proof� For n �N let us de�ne functions

gn
�� �



n����� ���� � � ��n�
����� ���� � 
 ��n�

Then by the spectral theorem

kx � 
gn
hx� xi�� gm
hx� xi��k �
��hx� xi
gn
hx� xi�� gm
hx� xi���

�����
� supfj�
gn
�� � gm
���j � � � Sp
hx� xi�g�

Therefore the sequence x � gn
hx� xi� is a Cauchy sequence� so and it has a limit z � M� Then

kzhx� xi� � xk � lim
n�� kx � gn
hx� xi�hx� xi

� � xk � lim
n��kx
gn
hx� xi�hx� xi

� � ��k
� lim

n�� supfj�
���
gn
���

� � ��j � � � Sp hx� xig � 	�
This completes the proof� �

A Hilbert C��moduleM is called �nitely generated if there exists a �nite set fxig � M such thatM
equals the linear span 
over C and A� of this set� A Hilbert C��moduleM is called countably generated
if there exists a countable set fxig � M such thatM equals the norm�closure of the linear span 
over C
and A� of this set�

�



��� The standard Hilbert module HA

Theorem ��	�� 
Kasparov stabilization theorem� ����� Let A be a C��algebra� M be a countably
generated Hilbert A�module� Then M�HA

�� HA�

Proof� We start by proving the theorem for the case of unital C��algebra A� For this purpose it is
convenient to use the procedure of almost�ortogonalization ��	�� An element x of the Hilbert module N
is called non�singular if the element hx� xi � A is invertible� The set fxig � N is called orthonormal if
hxi� xji � �ij � It is called basis of the module N if �nite sums of the form

P
i xi � ai� ai � A� are dense in

N �
Lemma ��	�� 
��	�� Let N be a Hilbert A�module containing the orthonormal elements e�� � � � � en� x �
N � � 
 	� If an element y � N satis�es hy� yi � � and y�fx� e�� � � � � eng then there exists an element
en�� � N such that


i� the elements e�� � � � � en� en�� are orthonormal�


ii� en�� � SpanA
e�� � � � � en� x� y��

iii� dist
x� SpanA
e�� � � � � en���� � ��

Proof� Let

x� � x�
nX
i��

eihei� xi� x�� � x� � �y�

Then
hx��� x��i � hx�� x�i� �� � �� 
 	�

therefore the element x�� is nonsingular� Let�s put en�� � x�� � hx��� x��i����� Then
en�� � SpanA
x�� y��fe�� � � � � eng�

Therefore the elements e�� � � � � en� en�� are orthonormal� Since x� � SpanA
x� e�� � � � � en� and en�� �
SpanA
x

�� y�� we obtain the statement 
ii�� Finally� let us put

w � en��hx��� x��i��� �
nX
i��

eihei� xi � SpanA
e�� � � � � en����

and the equality kw � xk � kx�� � x�k � k�yk � � proves the statement 
iii� � �

We return now to the proof of Theorem ������ Let fyng be the sequence of generators of moduleM�
By feng we denote the standard basis of the moduleHA� Let fxng � feng�fyng be a sequence� in which
one meets each element en and each element yn in�nitely many times� Then the set fxng is generating
for the moduleM�HA� We will prove the theorem by induction� Let us assume that the orthonormal
elements e�� � � � � en � M�HA and a number m
n� � n are already constructed in such a way that


i� fe�� � � � eng � SpanA
x�� � � � � xn� e�� � � � � em�n���


ii� dist
xk� SpanA
e�� � � � � ek�� � �
k � � � k � n�

Since each element xi is equal to ej or yk� it is possible to �nd a number m
� 
 m
n� such that

em��fx�� � � � � xn��g� Since em��fe�� � � � � em�n�g� so it follows from the condition 
i� that

em��fxn��� e�� � � � � eng�
By Lemma ����� there exists an element

en�� � SpanA
e�� � � � � en� xn��� em�� 
��

such that the elements e�� � � � � en� en�� are orthonormal and

dist
xn��� SpanA
e�� � � � � en���� �
�

n � �
�

�



It follows from 
�� and from the condition 
i� that

fe�� � � � � en��g � SpanA
x�� � � � � xn��� e� � � � � em���

By putting m
n��� � m� we complete the step of induction� Thus� an orthonormal sequence en satisfying
the properties 
i� and 
ii� has been constructed� But the property 
ii� means that this sequence generates
the whole moduleM�HA� therefore M�HA

�� HA�
So� the theorem ����� is proved for unital C��algebras� Let A be a C��algebra without unit and A�

be its unitization� By de�ning the action of A� on the Hilbert A�moduleM by the formula x � 
a� �� ��
x � a � x�� x � M� 
a� �� � A�� � � C� we turn M into a Hilbert A��module� Let us consider the
A��moduleHA� and denote by HA�A the closure in HA� of the linear span of elements of the form x �a�
x � HA� � a � A� It is easy to see that HA�A � HA� The isomorphismM� HA�

�� HA� implies the
isomorphism

M�HA �MA�HA�A � 
M�HA��A �� HA�A � HA�

This completes the proof of the theorem� �

De�nition ��	�� LetM be a Hilbert A�module such that there exists a Hilbert A�module N � for which
holdsM�N �� Ln
A� with �nite n� ThenM is called �nitely generated projective A�module�

The following two theorems of Dupre and Fillmore show� that �nite�dimensional projective submodules
in Hilbert modules have the sinpliest location�

Theorem ��	�	 
Dupre � Fillmore� ��	�� Let A be a unital C��algebra� M be a �nite�dimensional
projective A�submodule in the standard Hilbert A�module HA� Then


i� the nonsingular elements of the module M� are dense in M��


ii� HA �M�M��


iii� M� �� HA�

Proof� We begin the proof of the theorem with the case when M �� Ln
A�� Let g�� � � � � gn be an
orthonormal basis inM� We �x � 
 	� For each m let�s put

e�m � em �
nX
i��

gihgi� emi�

in such a way that e�m �M�� Then

he�m� e�mi � ��
nX
i��

hem� giihgi� emi�

Since the eqality hx� emi 
 	 is ful�lled for each x � HA� we conclude that he�m� e�mi 
 �� therefore there
exists a number m� such that for m � m� the elements e

�
m are nonsingular� Then it is possible to de�ne

e��m � e�mhe�m� e�mi�����
such that he��m� e��mi � �� Let x �M�� Then

he��m� xi � he�m� e�mi����he�m� xi � he�m� e�mi����hem� xi 
 	�

Let us select a number m � m� such that khe��m� xik 
 � and let us put

x� � x� � e��m�

It is easy to see that
kx� � xk � �� 
��

�



Let us show that the element x� is nonsingular� Put

u � x� e��mhe��m� xi� v � e��m
he��m� xi� � ���

Then u�v 
since u�e��m� and x� � u� v� Therefore�

hx�� x�i � hu� ui� hv� vi � hu� ui� 
he��m� xi� � ���
he��m� xi� � ��� 
��

and the right side of the equality 
�� is invertible� since khe��m� xik 
 �� Therefore� hx�� x�i is invertible too�
Together with the estimate 
�� this proves the statement 
i��

Let fxng be a sequence� in which each element em is repeated in�nitely many times � Let us put
x � x� �

Pn
i�� gihgi� x�i� Then 
taking � � �� it is possible to �nd an element gn�� � M� such that

hgn��� gn��i � �� dist
x� gn��A� � �� and� therefore dist
x�� SpanA
g�� � � � � gn���� � �� At the next step
we replace the moduleM by SpanA
g�� � � � � gn���� x� by x�� and � � � by � � ���� Going on with the
indicated procedure� we will obtain an orthonormal basis fgkg� k � N� extending the basis g�� � � � � gn of
submoduleM� and fgk � k 
 ng is a basis of the moduleM�� This proves the statements 
ii� and 
iii��

We pass now to the case of an arbitrary �nitely generated projective moduleM� LetM�N �� Ln
A��
By Theorem ����� N �HA

�� HA holds� therefore

Ln
A� �� N �M� N �HA
�� HA�

Hence� if K is the orthogonal complement for submodule N �M in the module N �HA� then K �� HA

and N �M�K � N �HA� But obviously K �M� is the orthogonal complement of the submoduleM
in the module HA� �

Theorem ��	�� 
��	�� Let A be a unital C��algebra and let M be a �nitely generated projective Hilbert
submodule in an arbitrary Hilbert A�module N � Then N �M�M��

Proof� Similarly to the previous theorem the proof can be reduced to the case when M � Ln
A� is a
free module� If fg�� � � � � gng is the standard basis of M� and x � N � then put x� � x �Pn

i�� gihgi� xi�
Then x� �M� and x� x� �M�� therefore� N �M�M�� �

� Operators on Hilbert modules

��� Bounded operators and operators admitting an adjoint

Let M�N be Hilbert C��modules over a C��algebra A� The bounded C�linear A�homomorphisms from
the moduleM to the module N are called operators fromM to N � We denote by HomA
M�N � the set
of all operators from the moduleM to the module N � If N � M� then EndA
M� � HomA
M�M� is
obviously a Banach algebra� However� we shall see soon that there is no natural involution on this algebra�
Let T � HomA
M�N �� We say that T admits an adjoint if there exists an operator T � � HomA
N �M�
such that for all x �M� y � N

hTx� yi � hx� T �yi�
Lemma ����� Let M be a Hilbert A�module� T �M
M and T � �M
M be maps such that for any
x� y �M

hx� Tyi � hT �x� yi�
Then T �and T � as well� is a bounded homomorphism from EndA
M�� Therefore� T � End�A
M��

Proof� For any x� y and z fromM� w � C and a � A one has

hz� T 
x� y�i � hT �z� x� yi � hT �z� xi� hT �z� yi � hz� Txi� hz� T yi � hz� Tx� Tyi�
hz� Twxi � hT �z� xiw � hz� Txiw � hz� wTxi�

hz� T 
xa�i � hT �z� xai � hT �z� xia � hz� Txia � hz� 
Tx�ai�

�	



Since z is an arbitrary element� it follows that

T 
x � y� � Tx� Ty� T 
wx� � wTx� T 
xa� � 
Tx�a�

and linearity properties hold�
To prove the continuity T we should verify that its graph is closed� Let x� 
 x� T 
x�� 
 y in M�

and z � M be an arbitrary element� Then

	 � hT �
y � Tx�� x�i � hT �
y � Tx�� x�i
� hy � Tx� T 
x��i � hT �
y � Tx�� x�i �
 hy � Tx� yi � hT �
y � Tx�� xi � hy � Tx� y � Txi� �

We show now that there exist operators without adjoint�

Example ����� Let A be a unital C��algebra� As above� the standard basis of the Hilbert module HA

consists of the elements ei � 
	� � � � � 	� �� 	� � � ��� where � is at the i�th place� It is possible to associate
with each operator � � EndA
HA� its matrix with respect to this basis�

ktijk� tij � hei� T eji�
Then the adjoint operator has the matrix kt�jik�

Let A � C
�	� ���� and let the functions �i � A� i � �� �� � � �� be de�ned by the equality

�i �

��
��
	 on �	� �

i�� � and �
�
i � ���

� at the point xi �
�
� 


�
i �

�
i�� ��

islinear on � �
i�� � xi� and �xi�

�
i ��

�

Let an operator T � EndA
HA� has the matrix�B� �� �� �� � � �
	 	 	 � � �
	 	 	 � � �
� � � � � � � � � � � �

�CA

actually it is an operator from the module HA to A� i�e� an A�functional�� It is easy to verify that T is
bounded� But the operator T � is not well�de�ned� since it should have the matrix�B� ��� 	 	 � � �

��� 	 	 � � �
��� 	 	 � � �
� � � � � � � � � � � �

�CA �

but the image of the basis element ei should have the �rst column as its coordinates� i�e� an element of
HA� however the series

P
�i�

�
i does not converge with respect to the norm in C��algebra A�

The set of all operators from the module M to the module N admitting an adjoint we denote by
Hom�A
M�N �� The algebra End�A
M� � Hom�A
M�M� is a Banach involutive algebra� Moreover� it is a
C��algebra� it follows from the estimate

kT �Tk � sup
x�B��M�

fhT �Tx� xig � sup
x�B��M�

fhTx� Txig � kTk� �

where the unit ball in the moduleM is denoted by B�
M��
The following statement will be used by us frequently without special reference�

Proposition ����� For an operator T �M
M the following conditions are equivalent	


i� T is a positive element of C��algebra End�
M��


ii� for any x �M the inequality hTx� xi � 	 is ful�lled� i�e� this element is positive in the algebra A�

��



Proof� The �rst condition is equivalent to the equality T � S�S for some S � End�
M�� Therefore�

hTx� xi � hSx� Sxi � 	 for any x � M�

Let now hTx� xi � 	 for all x � M� Then

hTx� xi � hTx� xi� � hx� Txi for all x � M�

The map 
x� y� 

 hTx� yi de�nes a sesquilinear form onM� therefore� by the polarization equality ������
hTx� yi � hx� Tyi for all x and y fromM� This means by Lemma����� that T � End�
M� and T � T �� So�
T is a selfadjoint element of the algebra End�
M� and� therefore 
see ���� ��
����� it can be represented in
the form of a di�erence T � T��T� of two elements of End�
M�� T� � 	� T� � 	 and T�T� � T�T� � 	�
Then hT�y� yi � hT�y� yi for any y �M� In particular�

hT �
�x� xi � hT �

�x� T�xi � hT�T�x� T�xi � 	�

On the other hand� T� � 	 and T �� � 	� therefore hT ��x� xi � 	 
as the statement in this direcrtion is
already proved�� So� we have the unique possibility� hT �

�x� xi � 	 for any x � M� By the polarization
equality� this implies hT ��x� yi � 	 for all x and y fromM� and T �� � 	� T� � 	� Hence� T � T� � 	� �

Theorem ����	 
����� Let M and N be Hilbert A�modules� T � M�
N be a linear map� Then the
following conditions are equivalent	


i� the operator T is bounded and A�linear� i�e� T 
x � a� � Tx � a for all x �M� a � A�


ii� there exists a constant K � 	 such that for all x � M the operator inequality hTx� Txi � Khx� xi
holds�

Proof� To obtain the second statement from the �rst one� let us assume that T 
x � a� � Tx � a and
kTk � �� If C��algebra A does not contain a unit� then we the consider modulesM and N as modules
over C��algebra A�� obtained from A by unitizaton� For x �M and n �N let us put

an �

�
hx� xi� �

n

�����
� xn � x � an�

Then hxn� xni � a�nhx� xian � hx� xi�hx� xi� �
n

��� � �� therefore� kxnk � �� hence kTxnk � �� Then for
all n �N the operator inequality hTxn� Txni � � is valid� But

hTx� Txi � a��n hTxn� Txnia��n � a��n � hx� xi� �

n
� 
��

Passing in the inequality 
�� to the limit n
�� we obtain hTx� Txi � hx� xi�
To derive the �rst statement from the second one we assume that for all x � M the inequality

hTx� Txi � hx� xi is ful�lled� It obviously follows from it that the operator T is bounded� kTk � �� Let
x �M� y � N � Let us de�ne a map r � A��
A� by the equality

r
a� � hy� T 
x � a�i�
Then

r
a��r
a� � hT 
x � a�� yihy� T 
x � a�i � kyk� hT 
x � a�� T 
x � a�i � kyk� hx � a� x � ai � kyk� a�hx� xia
� kyk� kxk� a�a�

To complete the proof we use the following statement�

Lemma ����� 
���� ���� Let A be a unital C��algebra let r � A�
A be a linear map such that for some
constant K � 	 the inequality r
a��r
a� � Ka�a is ful�lled for all a � A� Then r
a� � r
��a for all
a � A� �

��



Therefore� r
a� � r
��a� i�e�
hy� T 
x � a�i � hy� Txia � hy� Tx � ai

for all y � N � x �M� This implies the statement of the theorem� �

Corollary ����� Let M�N be Hilbert A�modules� T � EndA
M�N �� Then

kTk � inf�K��� � hTx� Txi � Khx� xi �x �M�
� �

Example ����� LetM � N �L be a decomposition into an orthogonal direct sum of Hilbert modules�
We de�ne an operator P �M�
M as the operator of projection onto a submodule N along the module
L� Then P is bounded� kPk � �� and P � � P � therefore P � End�A
M��

��� Compact operators in Hilbert module

Let M�N be Hilbert A�modules� x � N � y � M� Let us de�ne an action of an operator �x�y �M�
N
on an element z � M by the formula

�x�y
z� �� xhy� zi� 
��

The operators of the form 
�� are called elementary operators� They obviously satisfy the equalities


i� 
�x�y�
� � �y�x�


ii� �x�y�u�v � �xhy�ui�v � �x�vhu�yi for u �M� v � N �

iii� T�x�y � �Tx�y for T � HomA
N �L��

iv� �x�yS � �x�S�y for S � Hom�A
L�M��

We denote the closed linear span of the set of all elementary operators by K
M�N �� The elements of
K
M�N � we shall call compact operators� In the case N � M the equalities 
i��
iv� mean that the
algebra K
M� � K
M�M� is a closed two�sided ideal in the C��algebra End�AM�� Compact operators
acting on Hilbert modules are not compact operators in the usual sence one considers them as operators
from one Banach space to another� However� they are a natural generalization of compact operators on
a Hilbert space�

Proposition ����� Let HA be the standard Hilbert module over a unital C��algebra A� Ln
A� � HA be
free submodule generated by the �rst n basis elements� An operator K � End�A
HA� is compact if and
only if norms of restrictions of the operator K onto orthogonal complements to submodules Ln
A� tend
to zero�

Proof� Let us denote by Pn the projection in HA onto the submodule Ln
A��� Then for any z�Ln
A�
we have

k�x�y
z�k� � kh�x�y
z�� �x�y
z�ik �
��hy� zi�hx� xihy� zi��

� kxk� khy� zik� � kxk� khPny� zik�
� kxk� � kPnyk� � kzk� �

Since kPnyk tends to zero� the same is true for the norm of the restriction of the operator �x�y to the
submodule Ln
A�� and� therefore� for norm of any compact operator� Let us assume now that for some
operator K

��KjLn�A���� 
 	 holds� Then� since
Pn

m��Kemhem� zi � 	 for any z�Ln
A�� we have for
kzk � � and z�Ln
A�

sup
z

�����Kz �
nX

m��

Kemhem� zi
����� � supz kKzk�
	 
��

as n 
 �� If z � Ln
A� then Kz �
Pn

m��Kemhem� zi� It means that 
�� holds also if the supremum
is taken over the unit ball of the whole module HA� therefore the operator K is a norm limit of the
operators Kn �

Pn
m�� �Kem�em � �

��



Let us remark that in the case of modules over C��algebras without unit the statement of ����� is not
valid�

We denote the C��algebra of compact operators of separable Hilbert space H by K� Since the algebra
K is nuclear ����� there is the unique C��seminorm on the algebraic tensor product of K by any C��algebra
A� and we denote by K�A the completion with respect to this seminorm�We denote byMn
A� �Mn�A
the C��algebra of all n�n�matrices over A�
Proposition ����� There exist the following natural isometric isomorphisms


i� K
A� �� A�


ii� K
Ln
A�� ��Mn
A��


iii� K
HA� �� K �A�

Proof� If a C��algebra is unital then the statement 
i� is obvious� In the general case we consider a map
� � SpanC
�a�b � a� b � A��
A� de�ned by the formula

�

�
nX
i��

�i�ai�bi

	
�

�X
i��

�iaib
�
i �

Let us verify that this map is well�de�ned� if
P

i �i�ai�bi �
P

j �j�cj �dj � then
P

i �iaib
�
ix �

P
j �jcjd

�
jx

for any x � A� therefore�
P

i �iaib
�
i �

P
j �jcjd

�
j � The map � is multiplicative and involutive�

�
�a�b �c�d� � �
�ab��dc�� � �
�a�b��
�c�d�� �
��a�b� � �
�b�a� � �
�a�b�
��

Surjectivity of � follows from the possibility of representation a � u
a�a���	 for any a � A 
see ������� If

u��� � � A� is an approximate unit of the algebra A then

lim
�

�����
nX
i��

�i�ai�bi
u��

����� �
�����

nX
i��

�iaib
�
i

����� �
therefore k�
k�k � kkk for k �Pn

i�� �i�ai�bi � It means that the map � can be extended by continuity up
to a map from the whole algebra K
A�� The inequality�����

�X
i��

�i�ai�bi

����� � sup
kxk��

�����
�X
i��

�iaib
�
ix

����� �
�����
�X
i��

�iaib
�
i

����� �
������
� �X
i��

�i�ai�bi

	�����
shows that the map � is an isometry� so the statement 
i� is proved� The statement 
ii� can be proved
similarly with the use of the map

�n � �a�	


	an�b�	


	bn 
�


�B� a�b
�
� � � � a�b

�
n

���
���

anb
�
� � � � anb

�
n

�CA �

Finally� as the isometric map from the linear space �nK
Ln
A�� to the linear space �nMn
A� is de�ned�
and as these spaces are dense in C��algebras K
HA� and K�A respectively� so we obtain the statement

iii�� �

Lemma ����� Let x � M be an arbitrary element� Then there exists z �M and k � �u�v � K
M� such
that x � kz�

Proof� Let us put
u �� v �� z �� lim

���
x 
�� hx� xi�������

��



As s�
� � s��� is uniformly convergent to s on bounded sets� so in order to prove that u is well�de�ned
we should remark that for t � hx� xi one has

hx 
� � hx� xi������ � x 
�� hx� xi������� x 
�� hx� xi������ � x 
�� hx� xi������i
� �
�� t������ � 
�� t�������t�
�� t������ � 
�� t�������

� �
�� t������ � 
� � t��������
t����	�

The same argument shows that x � kz� �

Remark that we have also proved thatMhM�Mi �M�

Theorem ����	 A Hilbert A�module M is countably generated if and only if the C��algebra K
M� is
	�ubital�

Proof� Let the algebra K
M� be 	�unital and  n be a countable approximate unit for it� Then

x � lim
n�� nx for any x � M� 
��

Really� by Lemma ������ x � kz holds for some k � K
M�� z � M� As  nk �
 k with respect to the
norm� so  nx �  nkz �
 kz � x�

By de�nition� any compact operator is close to a linear combination of elementary ones� Hence� for
each  n there exist elements x

n
i and y

n
i fromM such that������

s�n�X
i��

�xn
i
�yn
i
� n

������ 
 �

n
� n � �� �� � � � �

Let us show that the countable set xni � i � �� � � � � s
n�� n � �� �� � � �� generates the moduleM� Let us
consider an arbitrary element x �M and arbitrary small � 
 	� By 
�� we can �nd n so big that

kx�  nxk 
 �

�
�

�

n



�

�
�

Then ������x�
s�n�X
i��

xni � hyni � xi
������ � kx�  n
x�k�

������ n
x��
s�n�X
i��

�xn
i
�yn
i

x�

������ 
 �

�
�
�

�
� ��

Let now a moduleM be countably generated� It can be considered as a module over the algebra A�

obtained by unitization of A 
if it was not unital� with respect to the action x � 
a� �� �� x �a��x� x �M�
a � A � � � C� If it was countably generated over A then it should be countably generated over A�

too� Since in the de�nition of elementary compact operators only the A�inner product is involved� then
KA
M� � KA�
M�� Thus we can restrict ourselves to the case of unital algebra A�

So� M is a countably generated module over the unital algebra A� By the Kasparov stabilization
theorem M� HA

�� HA� Let � � M 
 HA be the corresponding inclusion and � � HA 
 M be the
corresponding selfajoint projection� Let feig be the standard basis of HA� Remind that for a C��algebra
the property of being 	�unital is equivalent to that of having a strictly positive element� Let us consider

 ��
�X
n��

�en �en
n

�

or in a matrix form

 �� diag 
��
�

�
�
�

�
� � ���

Then  is a strictly positive element in K
HA�� Indeed� on the one hand� by Proposition ����� we have
 � K
HA�� On the other hand� if � � K
HA� 
 C is a state such that �
 � � 	� then �
�en�en� � 	 for
any n� since all �en�en � 	� Then for any x � 
x�� x�� � � �� � HA

�
�en�x�x�en� � �

���� �X
j��

�en�ejxj

�A�� �X
j��

�en�ejxj

�A��A � �

�� �X
j��

�en�ejxj�
�
en�ejxj

�A
��



� �

�� �X
j��

�en�ejxj�ejxj�en

�A � �

�� �X
j��

�en
hejxj�ejxji�en

�A � kxk�
�X
j��

�
�en�en� � 	�

since the last inequality follows from

h�en
hejxj�ejxj i�en
z�� zi � hen � hejxj� ejxjihen� zi� zi � hz� enix�jxjhen� zi � kxk�h�en�enz� zi�
Thus for any x� y and z fromM�

�x�y
z� � x � hy� zi � �x�en�en�y
z�

and
j�
�x�y�j � j�
�x�en�en�y�j � ����
�x�en�en�x� �

���
�en�y�y�en� � 	�

as the second multiplicand vanishes� So � vanishes on a dense subset� consequently everywhere on K
HA��
We have shown that  is a strictly positive element of K
HA�� Then  n ��  ��n is a countable approxi�
mate unit of K
HA�� and � n� is a countable approximate unit of K
M�� Indeed� if k � K
M�� ��k � k�
then �k� � K
HA� and

kk � � n�k � k�
�k� �  n��k � k�k� � nk �
 	 
n �
��� �

��� Complemented submodules and projections in Hilbert C��modules

Let us remind that a closed submodule N of Hilbert C��moduleM is called orthogonally complemented�
ifM � N �N�� As we have already seen� a closed submodule of Hilbert C��module can be orthogonally
uncomplemented�

De�nition ����� A closed submoduleN of Hilbert C��moduleM is called 
topologically� complemented�
if there exists a closed submodule L inM such that N � L �M� N 	L � f	g�

The following example shows that there exist topologically complemented but orthogonally uncom�
plemented submodules�

Example ����� Let J � A be an ideal such that the equality Ja � 	� a � A� implies a � 	� Let us put
M � A � J �

N � f
b� b� � b � Jg�
Then

N� � f
c��c� � c � Jg�
Therefore� N �N� � J � J ��M� However� the submodule L � f
a� 	� � a � Ag � M is a topological
complement to N inM�

We denote non�ortogonal direct sum of Hilbert modules by N e�L� A decomposition in a direct sum
M � N e�L allows to de�ne a projection P onto N along L� The operator P is A�linear and� by the
closed graph theorem� is bounded� therefore P � EndA
M�� However� as it is clesr from Example ������
the projection P can not admit an adjoint� But if M � N � L� then the corresponding projection is
selfadjoint� P � End�A
M�� Since it is more convenient to work with orthogonal decompositions� we would
like to know� when such decomposition exists�

Theorem ����� 
��
�� Let M� N be Hilbert A�modules� T � Hom�A
M�N � is an operator with closed
image� Then


i� Ker T is an orthogonally complemented submodule in M�


ii� ImT is an orthogonally complemented submodule in N �

Proof� 
i� Let ImT � N� and let T� �M�
N� be an operator such that its action coincides with the
action of T � By the open mapping theorem� the image of the unit ball of T�
B�
M�� contains some ball
of radius � 
 	 in N�� Therefore� for each y � N� it is possible to �nd x � M such that T�x � y and
kxk � ��� kyk�

kT �� yk� � khy� T�T �� yik � kyk � kT�T �� yk �

�




and hence�

kyk� � khT�x� yik � khx� T �� yik � kxk � kT �� yk � ��� kyk � kyk��� kT�T �� yk��� �
We obtain� that for any y � N�

kyk � ��� kT�T �� yk �
Let us show that the spectrum of the operator T�T �� does not contain the origin� Suppose the opposite�
i�e� that 	 � Sp
T�T �� �� Let f be a continuous function on R such that

f
	� � � � kfk � f
t� � 	 !"� jtj � �

�
����

Using functional calculus in the C��algebra End�A
M�� we de�ne the operator S � End�A
M� by the
equality S � f
T�T

�
� �� Then kSk � � and kT�T �� Sk � �

��
��� We can choose an element x �M such that

kxk � �� kSxk 
 �
� � Then

kT�T �� Sxk �
�

�
��� 
 ��� kSxk

is a contradiction to the supposition 
with y � Sx�� So 	 �� Sp
T�T �� �� therefore the operator T�T �� is
invertible� and� in particular� surjective� For any z � M it is possible to �nd an element w � N� such
that T�z � T�T

�
�w� Then z � T ��w � Ker T and

z � 
z � T ��w� � T ��w � Ker T � ImT �� �

Since the module ImT �� is obviously orthogonal to Ker T � it is a complement of Ker T � that completes
the proof of 
i��


ii� Since M � Ker T � ImT �� � the submodule ImT �� is closed� Let us remark that ImT �� � ImT ��
therefore it is possible to apply the proof of 
i� to the case of the operator T � instead of T � and it gives
the orthogonal decomposition N � Ker T � � ImT � �

Corollary ����	 If P � End�A
M� is an idempotent� then its image ImP is an orthogonally comple�
mented submodule in M� �

Corollary ����� Let M�N be Hilbert A�modules� F � M 
 N be a topologically injective A�
homomorphism 
i�e� kFxk � � kxk for some � 
 	 and for all x � M � admitting an adjoint operator�
then F 
M�� F 
M�� � N � �

Corollary ����� Let M be a Hilbert A�module� J � M 
 M be a selfadjoint topologically injective
A�homomorphism� Then J is an isomorphism� �

Lemma ����� 
��
�� LetM be a �nitely generated Hilbert submodule in a Hilbert module N over a unital
C��algebra� Then M is an orthogonal direct summand in N �

Proof� Let x�� � � � � xn � M be a �nite set of generators� Let us de�ne an operator F � Ln
A��
N by
the formula F 
ei� � xi� where ei � Ln
A� is the standard basis� i � �� � � � � n� It is easy to see that the
operator F admits the adjoint F � � N�
Ln
A� acting by the formula F �
x� � 
hx�� xi� � � � � hxn� xi��
where x � N � By Theorem ����� the module ImF �M is an orthogonal direct summand� �

Lemma ����� Let A be a unital C��algebra and let HA �Me�N � p � HA 
M be a projection� N be
a projective module� Then HA �M�M� if and only if p admits an adjoint�

Proof� If there exists p�� then 
�� p�� � �� p� exists too� Therefore� by Theorem ����� Ker
�� p� �M
is the image of a selfadjoint projection�

To prove the converse� let us verify at �rst� that HA � N� �M�� By the Kasparov stabiliza�
tion theorem� it is possible to suppose without loss of generality� that N � spanAhe�� � � � � eni� N� �
spanAhen��� en��� � � �i� Let gi be the images of ei under the projection N ontoM��

e� � f� � g�� � � � � en � fn � gn� fi �M� gi �M��

��



Since the projection realizes an isomorphism of A�modules N �� M�� the elements g�� � � � � gn are free
generators and hgk� gki 
 	A� So� if

fk �
�X
i��

f ikei� then ek � fkk ek �
X
i��k

f ikei � gk�

On the other hand�

� � hek� eki � hfk� fki� hgk� gki� �� 
fkk �
fkk �
� � hgk� gki 
 	�

i�e� the spectrum is separated from the origin� Then the element �� fkk is invertible in A�

ek �
�

�� fkk

��X
i��k

f ikei � gk

�A � N� � M� 
k � �� � � � � n��

and� therefore N� � M� � HA� Let x � N� 	M�� Since any element y � HA � Me�N has the
form y � m � n� then hx� yi � hx�mi � hx� ni � 	� in particular� hx� xi � 	 and� therefore x � 	� Thus

HA � N� e�M�� Let us consider the following map q �


� on N�

	 onM� � which is a bounded projection�

since HA � N�e�M�� Let x� y � Me�N � x� � y� � N� e�M�� Then

hp
x� y�� x� � y�i � hx� x� � y�i � hx� x�i�
hx� y� q
x� � y��i � hx � y� x�i � hx� x�i�

Therefore� there exists p� � q� �

��� Full Hilbert C��modules

LetM be a Hilbert A�module � We denote by hM�Mi � A the closure of the linear span of the elements
of the form hx� xi� x �M� It is obvious� that the set hM�Mi is a closed two�sided involutive ideal in the
C��algebra A�

De�nition ��	�� A Hilbert A�module is called full� if hM�Mi � A�

It is possible to consider any Hilbert module as a full Hilbert module over the C��algebra hM�Mi�
The following statement gives an example showing that this is a useful notion�

Theorem ��	�� 
���� �	�� Let A be a 	�unital C��algebra� M be a full Hilbert A�module� Then


i� there exists a Hilbert A�module N such that l�
M� �� HA � N � If a C��algebra A is unital� then
there exists a number n and a Hilbert A�module N � such that M� � � ��M �Mn �� A�N ��


ii� if the module M is countably generated then l�
M� �� HA�

Proof� Let us consider the following set

S �



c � A � kck � �� c �

kX
i��

hxi� xii� k �N� xi �M
�
�

For the proof of the theorem two following lemmas will be necessary�

Lemma ��	�� 
����� For any a � A� a � 	� and any � 
 	 there exists c � S such that k
� � c�ak 
 ��

Proof� Since the moduleM is full� it is possible to �nd a �nite set of elements yi � M such that�����a�
kX
i��

hyi� yii
����� 
 ���� 
��

��



Let us put

xi � yi
�
� �

kX
j��

hyj � yji������ i � �� � � � � k� c �
kX
i��

hxi� xii� b �
kX
i��

hyi� yii�

Then kck �
��
�� � b�����b
�� � b�����

�� � �� therefore c � S� Let f
t� �� �	t�
�� � t���� Applying this
function to the element b� we obtain the estimate

kf
b�k � ���	b�
�� � b���
�� � ����
�� � b���b���
�� � b���

�� � ��
� � c�b�
�� c�
�� �� �����

Therefore� k
� � c�bk � ���� and together with the estimate 
�� it proves the lemma� �

Lemma ��	�	 
����� In the module M there exists a sequence 
xi�� xi � M� such that the sequence of

partial sums of the series
Pk

i�� hxi� xii is a countable approximate unit of the algebra A� If is unital then

there exists a �nite number k and elements x�� � � � � xk �M such that
Pk

i�� hxi� xii � ��
Proof� We shall consider at �rst the case of a unital C��algebra� Then by Lemma ����� it is possible to
�nd an element c � S such that k�� ck 
 ���� Therefore the element c is invertible and c �

Pk
j�� hyj � yji

for some k and yj � M� By putting xj � yj � c����� we get
Pk

j�� hxj� xji � ��
In the case of a C��algebra without unit let h � A be a strictly positive element� By induction we

shall construct a sequence 
cj� in S such that

kX
j��

cj � ��
������
���� kX

j��

cj

�A h

������ 
 �

�k
�

By Lemma ����� we can �nd an element c� � S such that k
�� c��hk 
 �
� � Under assumption that the

elements c�� � � � � ck are already found� by Lemma ����� we can �nd an element d � S such that������
�� d�

�
��

kX
j��

cj

����
h

������ 
 �

�k��


�

and let us put

ck�� �

�
��

kX
j��

cj

����

d

�
��

kX
j��

cj

����

�

Since

�����
�
��Pk

j�� cj

����
����� � � and d � S� we have ck�� � S� Since kdk � �� ck�� � ��Pk

j�� cj� thenPk��
j�� cj � �� Finally� it follows from the inequality 

� that������

�
��

k��X
j��

cj

�
h

������ �

������
�
��

kX
j��

cj

����


�� d�

�
��

kX
j��

cj

����
h

������
�

������
�
��

kX
j��

cj

����
������
������
�� d�

�
��

kX
j��

cj

����
h

������ 
 �

�k��
�

that completes the step of induction� So we obtain that������
�
��

kX
j��

cj

�
h

�������
	
as k 
 �� Since the strictly positive element h generates the whole C��algebra A ����� the lemma is
proved� �

��



Let us continue the proof of the theorem� By Lemma ����� we can choose a sequence 
xi� in the

module M such that the partial sums of
Pk

j�� hxi� xii form an approximate unit in A� De�ne a map

T � A�
l�
M� by the equality

T 
a� � 
x�a� � � � � xka� � � ��� a � A� 
��

As the series hTa� Tai � P�
i�� a

�hxi� xiia � a�a converges uniformly in A� so T 
a� � l�
M�� Moreover�
the adjoint operator is well�de�ned� T � � l�
M��
A� T �
yi� �

P�
i�� hxi� yii � A for 
yi� � l�
M�� Since

T �T acts identically on A� the operator T is an isometry� and

l�
M� � ImT � Ker T � �� A� N �

where N � Ker T �� This �nishes the proof of statement 
i� of the theorem for the case of a C��algebra
without unit� In the case of a unital C��algebra the previous reasonings can be applied literally if we
replace the module l�
M� byMk and replace in�nite sequence in 
�� by a �nite one�

We pass to the proof of the statement 
ii�� For this purpose let us renumber the sequences in the
module l�
M� with the help of a bijection N�
N�N� Then elements of the module l�
M� are realised
as sequences 
mij�� mij � M and for each i � N the set of sequences 
mij�� j � N� is isomorphic to
the module l�
M�� Such a renumbering de�nes an isomorphism l�
M� �� l�
l�
M��� By the isomorphism
l�
M� �� A �N we conclude that

l�
M� �� l�
l�
M�� �� l�
A� N � � l�
A� � l�
N ��
Notice that the Hilbert module l�
N � is countably generated� therefore

l�
M� �� l�
A� � l�
N � �� l�
A�

by the Kasparov stabilization theorem� �

��� Dual modules� Self�duality

For a Hilbert A�moduleM let us denote byM� the set of all bounded A�linear maps fromM to A� The
structure of a vector space over the �eld C is introduced by the formula 
� �f�
x� �� �f
x�� where � � C�
f � M�� x � M� This de�nition seems arti�cial� however it is convenient� because it allows to de�ne a
linear inclusion of the moduleM intoM� 
there is also the alternate approach� to de�ne M� as the set
of all anti�linear maps fromM into A�� The formula


f � a�
x� � a�f
x��

where a � A� introduces a structure of a right A�module on M�� This module is complete with respect
to the norm kfk � supfkf
x�k � kxk � �g� Such modules we shall call dual 
Banach� modules� The
elements of the moduleM� are called functionals on the Hilbert moduleM� Let us remark that there is
an obvious isometric inclusionM�M�� which is de�ned by the formula x 

 hx� �i � bx� Sometimes� if it
will not cause a confusion� we will write hf� xi instead of f
x��
De�nition ����� A Hilbert moduleM is called self�dual ifM �M��

The condition of autoduality is very strong� Below we will see that there exist only a few self�dual
modules� each module over a C��algebra A is self�dual i� A is �nite dimensional� Auto�dual Hilbert
C��modules behave quite like Hilbert spaces� In the same way as and in the case of Hilbert spaces� the
following statements can be obviously checked�

Proposition ����� 
����� Let M be a self�dual Hilbert A�module� N be an arbitrary Hilbert A�module�
and T �M�
N is a bounded operator� T � HomA
M�N �� Then there exists an operator T � � N�
M
such that for all x �M� y � N the equality hx� T �yi � hTx� yi is valid� �

Corollary ����� Let M be a self�dual Hilbert A�module� Then EndA
M� � End�A
M�� �

Proposition ����	 Let M� N � M be a self�dual Hilbert A�module� Then N �M�M��

�	



Proof� Since M is self�dual� i � M 
 N is an isometric inclusion� admitting an adjoint� Therefore�
M � iM has an orthogonal complement by Lemma ������ �

If A is a unital C��algebra then the Hilbert module Ln
A� is obviously self�dual� For an arbitrary
module it is not true� moreover� the Banach moduleM� can not admit a structure of a Hilbert module
at all� Description of the dual module for the standard Hilbert module HA is given by the following

Proposition ����� Let us consider the set of sequences f � 
fi�� fi � A� i �N� such that the norms of

partial sums
���PN

i�� f
�
i fi

��� are uniformly bounded� If A is a unital C��algebra� this set coincides with H�
A�

the action of f on elements of the module HA is de�ned by the formula

f
x� �
�X
i��

f�i xi� 
��

where x � 
xi� � HA� and the norm of f is de�ned by the equality

kfk� � sup
N

�����
NX
i��

f�i fi

����� � 
��

Proof� Let f � H�
A� ei be the standard basis in HA� Let us put fi � 
f
ei��

�� We show that the sequence

fi� determines a functional f in a unique way� Let us assume that there exists a functional g �� f �
g
ei� � f
ei�� Let us choose x � HA such that kf
x� � g
x�k � C �� 	� Denote by x�N� the image of x

under the projection onto the submodule LN 
A� � HA� x�N� �
PN

i�� eixi � 
x�� � � � � xN � 	� � � ��� Let ud
�nd a number N such that

���x� x�N�
��� � �����

�X
i�N��

x�x

�����
���



C

�
kfk � kgk� �

Since f
x�N�� � g
x�N��� we have
��f
x � x�N�� � g
x � x�N��

�� � C� But� on the other hand� one has���f
x � x�N��� g
x� x�N��
��� � 
kfk � kgk� ���x� x�N�

��� 
 
kfk � kgk� C

�
kfk � kgk� � C���

The obtained contradiction shows that f � g� The Cauchy � Bunyakovskii inequality�����
NX
i��

f�i xi

�����
�

�
�����
NX
i��

f�i fi

�����
�����
NX
i��

x�ixi

����� 
�	�

shows that

kfk� � sup
N

�����
NX
i��

f�i fi

����� � 
���

Remark that if we take xi � fi�
���PN

i�� f
�
i fi

������� then the equality is reached in 
�	�� Let us put f �N� �


f�� � � � � fN � 	� � � ��� f �N� � LN 
A�� �� LN 
A�� It is obvious that

kfk �
���f �N�

��� � 
���

But
��f �N�

��� � ���PN
i�� f

�
i fi

���� therefore 
�� follows from 
��� and 
���� The convergence of the series 
��

follows from the fact� that for any � 
 	 it is possible to �nd a number N such that for all n 
 	 the
following estimate holds�����

N�nX
i�N

f�i xi

����� �
�����
N�nX
i�N

f�i fi

����� �
�����
N�nX
i�N

x�ixi

����� � kfk�
�����
N�nX
i�N

x�ixi

����� 
 kfk� �� �

��



Remark that for the functional f � 
�i� from Example ����� the partial sums
PN

i�� �
�
i�i are uniformly

bounded� however the appropriate series is not convergent�
Let us describe an interesting example of a dual module�

Example ����� ���� Let A � B
H� be the algebra of all bounded operators on a separable Hilbert
space H� Let us consider pairwise orthogonal projections pi � A� i � N such that the series

P
i pi

converges w#�weakly to � � A� and each projection pi is equivalent to �� We can consider H � �iHi as
an orthogonal sum of Hilbert spaces isomorphic to H� ui � H 
 Hi being isometries� so that

pi � uiu
�
i � � � u�iui�

As it was shown above 
see Proposition �������

l�
A�
� �

�
faig

�����ai � A� i �N�

�
sup
N�N

k
NX
i��

aia
�
i k
�

�

�

is an A�Hilbert module with respect to the inner product

hfaig� fbigi �� w��lim
X
i

aib
�
i �

The maps
S � A
 l�
A�

�� S � a 

 a � fuig�
S�� � l�
A�� 
 A� S�� � faig 

 w��lim

X
i

aiu
�
i

de�ne an isometric isomorphism of A and l�
A���

Let � be a positive linear functional on A� If M is a Hilbert A�module and if N� � fx � M �
�
hx� xi� � 	g is its linear subspace� then M�N� is a pre�Hilbert space with the inner product 
�� ���
given by the formula


x� N�� y �N��� � �
hx� yi�� x� y �M�

The norm de�ned by this scalar product we denote by k�k�� and the Hilbert space� obtained by completion
ofM�N� with respect to this norm� we denote by H�� Let f �M�� In accordance with Proposition �����
we have for all x �M

f
x��f
x� � kfk� hx� xi�
therefore� if x � N�� then

�
f
x��f
x�� � 	 � �
f
x���

Hence� the map
x�N� 
�
 �
f
x�� 
���

de�nes a linear functional onM�N�� Since

j�
f
x��j � k�k����
f
x��f
x����� � k�k��� kfk�
hx� xi���� � k�k��� kfk kx� N�k� �

the functional 
��� is bounded� Then there exists a unique vector f� � H� such that kf�k� � kfk k�k���
and 
f�� x�N��� � �
f
x�� for all x �M� For x �M we shall denote by bx the functional hx� �i � M��
Let us remark that by� � y � N� for all y � M�

Let � be another positive linear functional on A such that � � �� Then N� � N	 and the natural
map x� N� 
�
 x�N	 can be extended to the map

V��	 � H��
H	� kV��	k � ��
It is easy to see that V��	
bx�� � bx	� It appears that the same holds for all functionals onM��

Proposition ����� LetM be a Hilbert A�module� � and � be positive linear functionals on A and � � ��
Then V��	
f�� � f	 for any functional f �M��

��



Proof� Let f � M�� Since the quotient space M�N� is dense in H�� it is possible to choose a sequence
fyn �N�g of the elements fromM�N� such that kyn �N� � f�k� 
 	� Then

V��	
f�� � lim
n
V��	
yn � N�� � lim

n

yn �N	��

To prove the statement� it is su$cient to show that �
hyn� xi�
 �
f
x�� for all x �M� But

j�
hyn� xi � f
x��j� � k�k � �
hyn� xihx� yni � hyn� xif
x�� � f
x�hx� yni� f
x�f
x���
� k�k � �
hyn� xihx� yni � hyn� xif
x�� � f
x�hx� yni� f
x�f
x���

for each n � N� Since

�
hyn� xif
x��� � �
hyn� x � 
f
x���i�
 �
f
x � 
f
x����� � �
f
x�f
x����

it will be su$cient to show� that �
hyn� xihx� yni � f
x�hx� yni�
 	� Notice that

�
hyn� xihx� yni � f
x�hx� yni� � �
hyn� x � hx� ynii � f
x � hx� yni��
� 
yn �N� � f�� x � hx� yni� N����

and the sequence fx � hx� yni� N�g is norm bounded with respect to the norm k�k�� Indeed�

kx � hx� yni� N�k�� � �
hx � hx� yni� hx � hx� ynii� � �
hyn� xihx� xihx� yni�
� kxk� � �
hyn� xihx� yni� � kxk� � �
kxk� � hyn� yni� � kxk	 � kyn � N�k� �

and the sequence fyn � N�g is bounded� Since kyn �N� � f�k� 
 	� the statement is proved� �

��� Banach�compact operators

De�nition ����� Let M�N be Hilbert A�modules� M� be the dual module� Consider the closure
BK
M�N � in the Banach space HomA
M�N � of the linear span of operators of the form

�y�f 
x� � y � f
x��
where x �M� y � N � f �M�� The elements of the set BK
M�N � we call Banach�compact operators�

In the case N �M the set BK
M�N � is equipped with a natural structure of a Banach algebra� If
T � EndA
M� is an operator� generally speaking� not admitting an adjoint� then the equalities

�y�fTx � y � f
Tx� � �y�f�T 
x�� T �y�f 
x� � Ty � f
x� � �Ty�f 
x�

show that BK
M� is a two�sided ideal in the Banach algebra EndA
M��

In the case of the standard Hilbert module over a unital C��algebra we shall give one more description
of compact and Banach�compact operators� a geometric one� Let S � HA be a bounded set� We shall
name it A�pre�compact� if for each � 
 	 there exists a free �nitely generated A�module N �� Ln
A��
N � HA such that dist
S�N � 
 ��

Proposition ����� Let T � EndA
HA� �resp� T � End�A
HA��� Then the following conditions are equiv�
alent	


i� T � BK
HA� �resp�� T � K
HA���


ii� the image T 
B�
HA�� of the unit ball B�
HA� is A�pre�compact�

Proof� If the statement 
i� holds� it is su$cient to prove that it is possible to �nd an approximating
module N �� Ln
A� for a �nite set of the elements from HA and it can be easily done by the Dupr%e
� Fillmore method� as in the proof of Theorem ������ So suppose that 
ii� is carried out� Then for any
� 
 	 it is possible to �nd elements b�� � � � � bk � HA such that hbi� bji � �ij � which generate the module

��



N � HA and dist
T 
B�
HA���N � 
 �� where B�
HA� is the unit ball of the module HA� Let us denote
by PN the projection onto N and let us consider the operator PNT � It can be decomposed as

PNTx � b�hf�� xi� � � �� bnhfn� xi 
���

where fi � H�
A� Since x � B�
HA�� we can �nd an element b � N such that kTx� bk 
 �� therefore

kTx� PNTxk � kTx� b� b � PNTxk � kTx� bk� kPN 
b� Tx�k � � � kPN k � � ��� 
���

therefore kT � PNTk � �� and T lies in the norm closure of the set of operators of the form 
���� If T
admits an adjoint then PNT admits an adjoint too� hence fi � HA and T is compact� �

��	 C��Fredholm operators� Index

The material of this section is taken mainly from ����� Let us remind in the beginning the de�nition of
K�groups�
De�nition ����� ���� x II��� Let M be an Abelian monoid� Let us consider the direct product M �M
and its quotient�monoid with respect to the following equivalence relation


m�n� � 
m�� n�� � � p� q � 
m�n� � 
p� p� � 
m�� n�� � 
q� q��

This quotient monoid is a group� denoted by S
M � and is called the symmetrization ofM � Let us consider
now the additive category P
A� of projective modules over a unital C��algebra A and let us denote by �E�
the isomorphism class of an objectM from P
A�� then the set &
P
A�� of these classes has a structure of
an Abelian monoid with respect to the operation �M���N � � �M�N �� In this case the group S
&
P
A���
is denoted by K
A� or K�
A� and is called the K�group of A or the Grothendeick group of the category
P
A�� If A has no unit then the natural map A� 
 C induces a map of K�groups and let us put

K�
A� �� Ker
K�
A
��
 K�
C���

The groups Kn
A� �� K�
A�C�
R
n�� for natural n appear to be ��periodic in n� and the de�nition can

be extended to n � Z by periodicity�
For unital algebras we could use classes of stable 
after adding direct summand� homotopy of projec�

tions in An instead of classes of isomorphic projective modules� More precisely� projections p � An 
 An

and q � Am 
 Am are equivalent� if there can be found m� and n� such that n � n� � m � m� � s and
projections

As � An � An�

�
p 	
	 	

�
�
 An �An� � As� As � Am �Am�

�
q 	
	 	

�
�
 Am �Am�

� As

can be connected by a norm continuous homotopy in the set of projectors from End
As� � End�
As�

A unital'�� It is possible to consider also equivalence classes of projections in the algebraic sense� The
details can be found in ��� ��� �	� ����

Let us remind the following well known statement�

Lemma ����� 
compare ���� Theorem ������ The set of epimorphisms is open in the space of bounded
linear maps of a Banach space E to a Banach space G�

Lemma ����� ���� ���� Let N be a �nitely generated A�module over a unital A� a�� � � �as be its generators�
Then there exists a number � 
 	 such that if for some elements a��� � � �a�s � N the following inequalities
hold

ka�k � akk 
 �� 
k � �� � � � s�

then the elements a��� � � �a�s also generate N �

Proof� The map
f � Ls
A�
N � 
	� � � � � 	� �

i
� 	� � � � � 	� 

 ai

��



is an epimorphism� Hence� by Lemma ������ there exists � 
 	 such that if kg � fk 
 s�� then g is an
epimorphism� Let

g � Ls
A�
N � 
	� � � � � 	� �
i
� 	� � � � � 	� 

 a�i�

Then for any � � 
��� � � � � �s� � Ls
A� with norm k�k � �

k
g � f��k �
�����

sX
i��


a�i � ai��i

����� � s��

Hence g is an epimorphism and the elements a��� � � �a
�s generate N � �

In this section we assume that the algebra A is unital� Let us remind the de�nition of a Fredholm
operator �����
De�nition ����	 A bounded A�operator F � HA 
 HA� is called Fredholm� if


i� operator F admits an adjoint�


ii� there exists a decompositions of domain HA � M�e�N� and range HA � M� e�N� 
where
M��M��N��N� are closed A�modules� N��N� have �nite number of generators�� such that the

operator F has the following matrix form F �

�
F� 	
	 F�

�
with respect to these decompositions�

where F� �M� 
M� is an isomorphism�

Theorem ����� ���� Let HA
��Me�N � where M and N are closed A�modules� N has �nite number of

generators a�� � � � � as� Then N is a projective A�module of �nite type�

Proof� By Lemma ����� there exists � 
 	 such that if

ka�k � akk 
 �� a�k � N � k � �� � � � � s�

then fa�kg generate N � Let P � HA 
 N is the projection along the summandM in the module HA�
Then P is a bounded A�operator� Therefore there exists � 
 	 such that if kxk 
 � then kPxk 
 �� Let
us choose a number n� such that

kak � akk 
 �� k � �� � � � � s�

where ak is the projection of ak onto Ln� along L
�
n� � Let us represent ak in the correspondence with the

decomposition HA �Me�N as

ak � a�k � a��k � a�k � N � a��k � M�

Then ak�a�k � P 
ak�ak�� Therefore kak�a�kk 
 � and fa�kg generate N � Let N be the module generated

by fakg� Then HA is equal to the sumM�N � Indeed� if x � HA then

x � xM �
X

�ka�k � 
xM �
X

�ka��k� �
X

�kak�

Let us consider the bounded A�operator Q of projection onto Ln� along L
�
n� � Then

Q
ak� � ak� Q
N � � N �
P 
ak� � a�k� P 
N � � N �

Since ak are close to a�k� the composition of A�operators

N Q�
 N P�
 N
is an A�isomorphism� Therefore Q � N 
 N and P � N 
 N are A�isomorphisms� In parti�ular� if
sP

k��

�ka
�
k � 	 holds then

sP
k��

�kak � 	� Therefore M	N � 	� i� e� HA �Me�N � It is clear� that N is a

closed A�submodule in HA and
Ln� � 
M	 Ln��e�N �

Indeed� 
M	 Ln�� 	N � 	� on the other hand� if x � Ln� then x � x� � x��� x� � N � x�� � M� Since
N � Ln� � then x�� � Ln� � i� e� x

�� � M	 Ln� � Thus N is isomorphic to a direct summand in the free
�nitely generated A�module Ln� � �

��



Theorem ����� �
�� In the decomposition mentioned in the de�nition of a Fredholm operator� 
see ������
it is possible to suppose always that the modules M� and M� are orthogonally complemented� More
precisely� there exist such decompositions for F�

F� 	
	 F	

�
� HA � V�e�W� 
 V� e�W� � HA�

that V �� �V� � HA� V
�
� �V� � HA� or 
which is the same by Lemma ������ that projections V� e�W� 
 V�

and V�e�W� 
 V� admit an adjoint�

Proof� Let W� � N�� V� � W�
� � The orthogonal complement exists by Theorem ������ The restriction

F jW�

�
is an isomorphism� Indeed� if xn �W�

� � then let xn � xn� � xn� � x
n
� � M�� x

n
� �W�� kxnk � �� Let

us assume that kFxnk 
 	� then kFxn� � Fxn�k 
 	� and since Fxn� � M�� Fx
n
� � N��M�e�N� � HA�

it means that kFxn�k 
 	 and kFxn�k 
 	� The operator F� is an isomorphism� therefore kxn�k 
 	� If
a�� � � � � as are generators for W� � N�� then 	 � hxn� aji � hxn� � aji � hxn� � aji�

khxn� � ajik � khxn� � ajik � kxn�k kajk 
 	� n
�� j � �� � � � � s�

Since xn� � N�� x
n
� 
 	 
n 
 �� and xn � xn� � xn� 
 	 � a contradiction to kxnk � �� This

contradiction shows that F jW�

�
is an isomorphism�

Let V� � F 
V��� Since W� � N�� it is possible to suppose that W� � N�� Indeed� any y � HA has the
form y � m� � n� � F 
m�� � n�� where m� � M�� n� � N�� m� � M�� In turn� m� � v� � n�� where
v� � V�� n� �W� � N�� and

y � F 
v� � n�� � n� � F 
v�� � 
F 
n�� � n�� � V� �N��

Thus HA � V� �W��
Let y � V� 	W� � V� 	N�� i� e� n� � y � F 
v��� n� � N�� v� � V�� Let us decompose v� � m� � n��

where m� �M�� n� � N�� Then

n� � F 
m�� � F 
n���

F 
m�� � n� � F 
n��� F 
m�� �M�� n� � F 
n�� � N��

whence we obtain that F 
m�� � 	� n� � F 
n�� � 	� Since F �M�
��M�� m� � 	� Further� v� � V� �

N�
� and therefore

	 � hv�� n�i � hm� � n�� n�i � hn�� n�i� n� � 	�

Thus v� � m� � n� � 	� y � F 
v�� � 	� Hence V� 	W� � 	 and HA � V�e�W��
By Corollary ����� the module V� has the orthogonal complement V

�
� � V��V �� � HA� and it completes

the proof� �

Remark ����� If we do not require that the operator F is supposed to have an adjoint then it is possible
to state that there exists a decomposition F � N�

� � N� 
M�e�Ln� where Ln � spanA
e�� � � � � en�� but
M� does not necessarily have an orthogonal complement� This result was obtained in �����
De�nition ����� Let the conditions of De�nition ����� hold� By Theorem ������ N� and N� are pro�
jective A�modules and we can de�ne an index

indexF � �N��� �N�� � K
A��

Theorem ����� The index is well�de�ned�

Proof� It is necessary to check out that the index does not depend on decompositions of range and
domain involved in the de�nition of index ������ Let pm be the projection onto Lm along L�m� Let F be an
A�Fredholm operator� HA �M�e�N� be a decomposition of domain�HA �M�e�N� be a decomposition
of range�

F �

�
F� 	
	 F	

�
�

where F� �M� 
M� is an isomorphism� According to the proof of Theorem ����� and Theorem ����
 it
is possible to suppose that

N� � Ln� Ln � N� e�P�� M� � P� � L�n �

�




where P� is a projective �nitely generated A�module� Let anther decomposition of domain and range be
given�

HA �M�
�
e�N �

�� HA �M�
�
e�N �

��

Then there exists m � n such that

Lm � P��e�pm
N �
��� pm
N �

��
�� N �

��

where P �� is a projective �nitely generated A�module� This is exactly the result of the proof of Theo�
rem ������

Let us show that there exists m � n such that if

L�m � F 
Lm� �N�� and Q�m � HA 
 HA

is the projection on L�m along L��m � F 
L�m� � then

L�m � P�e�Q�m
N��� Q�m
N�� �� N��

where P� is a projective �nitely generated A�module� and

L�m � P��e�Q�m
N �
��� Q�m
N �

�� �� N �
��

where P �� is a projective �nitely generated A�module� Indeed� HA � L�m e�L��m� If a�� � � � � ak are generators
of the module N� then

aj � a�j � a��j � a�j � L�m� a��j � L��m� j � �� � � � � k�

For m 
 � we have ka��j k 
 	� as a��j � F 
x�m�� where x is arbitrary� x�m is a projection of x onto L�m
and kx�mk 
 	 for m
�� Then for big enough m we have

L�m � 
L�m 	M��e�Q�m
N��� Q�m
N�� �� N�


the proof of this fact repeats the proof of Theorem ������� Similarly

L�m � 
L�m 	M�
��e�Q�m
N �

��� Q�m
N �
��
�� N �

��

Since m � n� Lm �� N�e�P�� where P� is a �nitely generated projective A�module� From the equalities

F 
P�� � F 
Lm 	M�� � P�� P� �M��

we obtain that F � P�
�� P�� and it follows from relations F 
P��� � P ��� P�� � M� that F � P�� �� P���

Therefore we have the following equalities in K
A�

�N�� � �P�� � �N �
�� � �P��� � �Lm�� �P�� � �P���

�N�� � �P�� � �N �
�� � �P��� � �L�m�� �P��� � �P����

Thus �N��� �N�� � �N �
��� �N �

�� and we have proved that index is well�de�ned� �

Lemma ������ Let an operator F � HA 
 HA be A�Fredholm� Then there exists a number � 
 	 such
that any bounded A�operator D satisfying the condition kF � Dk 
 � and admitting an adjoint is an
A�Fredholm operator and indexD � indexF �

Proof� By the de�nition of the Fredholm property

HA �M� e�N�� HA �M�e�N�� F �

�
F� 	
	 F	

�
�

�this projection is well�de�ned� since L�m � M� for m � n and hence F j
L�m

is an isomorphism� whence it follows that

L��m
�� HA is a closed A�module� L�m � L��m � �� L�m � L��m � HA� therefore HA � L�me�L��m is a direct sum of closed

A�modules and Q�
m is a bounded A�operator

��



F� �M�
��M�� Then kF�k � kFk� moreover� if D � HA 
 HA is an arbitrary bounded A�operator� then

D �

�
D� D�

D� D	

�
�

then there exists a constant C such that kD�k � CkDk 
cf� ���� p� ������ Therefore� if D is an arbitrary
A�operator satisfying the estimate kF �Dk 
 � then kF� �D�k 
 C � �� Since F� is an isomorphism� we
can �nd � 
 	 such that if kF� � D�k 
 � and D� is an A�operator then D� is also an A�isomorphism�
By putting � � ��C we obtain that for the operator

D �

�
D� D�

D� D	

�
the element D� is an isomorphism� Then

U�DU� �

�
D� 	
	 D	 �D�D

��
� D�

�
�

where

U� �

�
� 	

�D�D
��
� �

�
� 
M�e�N��
 
M�e�N���

U� �

�
� �D��

� D�

	 �

�
� 
M� e�N��
 
M�e�N��

are A�isomorphisms� With the help of U� and U� we obtain a new decomposition of domain and range in
direct sums

HA �M�
�
e�N �

�� M�
� � U�
M��� N �

� � U�
N���

HA �M�
�
e�N �

�� M�
� � U��� 
M��� N �

� � U��� 
N���

With respect to the new decomposition the matrix of the operator D is equal to U�DU�� Thus the
operator D is Fredholm with the index

�U�
N���� �U��� 
N��� � �N��� �N�� � indexF� �

Lemma ������ Let F and D be A�Fredholm operators

F � HA 
 HA� D � HA 
 HA�

Then DF � HA 
 HA is an A�Fredholm operator and indexDF � indexD � indexF �

Proof� Let us consider for F and D decompositions from the de�nition

HA �M�e�N�
F�
M�e�N�

�� HA�

HA �M�
�
e�N �

�
D�
M�

�
e�N �

�
�� HA�

where

F �

�
F� 	
	 F	

�
� D �

�
D� 	
	 D	

�
�

F� and D� are isomorphisms� N��N��N �
��N �

� are projective �nitely generated A�modules� As well as
earlier� without loss of generality it is possible to suppose that

N� � Ln� Ln � N� e�P� M� � L�n � P�
Moreover� as F� �M� 
M� is an isomorphism� it is possible to change decomposition into direct sums�
by putting

M� � F��� 
L�n �� N � � F��� 
P�e�N�� M� � L�n � N � � Ln�

Thus a number n can be choosen as big as necessary� Let us choose n in such a way that

Ln � P�e�pn
N �
��� P� �M�

� 	 Ln� pn
N �
�� �� N �

��

��



where� as well as earlier� pn � HA 
 HA is the projection on Ln along L
�
n � Then

HA � L�n e�P� e�pn
N �
���

Let us put M� � L�n � N � � P� e�N �
�� With respect to the new decomposition HA � M�e�N � the the

matrix of the operator F has the form

F �

�
F� F�
	 F	

�
�

and F� is an isomorphism� Then�
F� F�
	 F	

��
� �F��� F�
	 �

�
�

�
F� 	
	 F	

�
�

Denoting by U the matrix

�
� �F��� F�
	 �

�
� let us putM� � U 
M��� N � � U 
N ��� We have obtained

a new decomposition of space HA �M� e�N �� and the matrix F for decompositions

HA �M�e�N �
F�
M�e�N � � HA

has the former diagonal form� Let us consider the projection

T � HA �M�e�P� e�N �
� 
M� e�P ��

Since HA
�� M�

�
e�N �

�� the restriction T jM�

�
� M�

� 
 M� e�P� is an isomorphism� Let us consider the
matrix D with respect to the decomposition

HA � 
M� e�P��e�N �
�

D�
M�
�
e�N �

� � HA�

This matrix has the form D �

�
D� 	
D� D	

�
� where D� is an isomorphism� Let us put

V D ��

�
� 	

�D�D
��
� �

��
D� 	
D� D	

�
�

�
D� 	
	 D	

�
�

Therefore it is possible to change decomposition in the range

HA �M �
�
e�N �

�� M �
� � V 
M�

��� N �
� � V 
N �

���

in such a way that the matrix of the operator D with respect to the new decomposition

HA �M �
�
e�N �

�� M �
� � V 
M�

��� N �
� � V 
N �

���

has diagonal form� Let us change decomposition in the range once again�

M �
� � D
M��� N � � D
P��e�N �

��

The matrix D with the respect to the new decomposition

HA �M�e�N �
D�
M �

�
e�N �

� � HA

has the diagonal form� Then the composition DF with the respect to the decomposition

HA �M�e�N � 
M �
�
e�N �

� � HA

has the form DF �

�

DF �� 	
	 
DF �	

�
� and 
DF �� is an isomorphism� Taking into account the fact

that End�HA is a C
��algebra� we conclude that DF is an A�Fredholm operator and

indexF � �N��� �N ��� indexD � �N ��� �N �
���

indexDF � �N��� �N �
���

We obtain from it that indexDF � indexD � indexF � �

��



Lemma ������ Let K � HA 
 HA be a compact operator� Then � �K is an A�Fredholm operator and
index 
� �K� � 	�

Proof� It is obvious that � � K admits an adjoint� Let us choose a number n such that the inequality
kKjL�n k 
 � is ful�lled� With respect to the decomposition HA � L�n � Ln we have the following matrix
presentation�

K �

�
K� K�

K� K	

�
� 
� �K� �

�
� �K� K�

K� � �K	

�
�

By the estimate kKjL�n k 
 � the operator � � K� is invertible� hence� as well as earlier� there exist
invertible operators U� and U� such that

U�
� �K�U� �

�
� �K� 	
	 
� �K	��K�
� �K����K�

�
�

Then� with respect to the new decomposition HA �M�e�N� 
M�e�N� � HA� where M� � U�
L�n ��
N� � U�
Ln��M� � U��� 
L�n ��N� � U��� 
Ln�� the operator 
��K� has the diagonal form and� therefore�
is an A�Fredholm operator and

index 
� �K� � �U�
Ln��� �U��� 
Ln�� � 	� �

Lemma ������ Let us consider an A�Fredholm operator F � HA 
 HA and let K � KA� Then the
operator F �K is A�Fredholm and index 
F �K� � indexF �

Proof� Let us consider decompositions of the space HA in direct sums such that the matrix F has the
diagonal form�

HA �M�e�N�
F�
M�e�N� � HA�

Without loss of generality we can suppose that

Ln � N�e�P�� M� � L�n e�P��
where P� is a �nitely generated closed A�module� Let us choose a big enough number n in such a way
that kKjL�n k 
 kF��� k��� Let us consider the new decomposition of space HA�

M� � L�n � N � � Ln� M� � FL�n � N � � F 
P��e�N��

Let F �

�
F� 	
	 F	

�
� K �

�
K� K�

K� K	

�
is a matrix of F and K with respect to the decomposition

HA �M�e�N � 
M�e�N � � HA� Then

F �K �

�
F� �K� K�

K� F	 �K	

�
�

and the operator F� �K� is invertible� By repeating the construction of Lemma �����	 
about operators
close to a Fredholm operator�� we obtain

index 
F �K� � �N��� �N �� � �Ln�� �F 
P�� �N�� �
� �N�� � �P��� �P��� �N�� � indexF� �

Theorem �����	 Let
F � HA 
 HA� D � HA 
 HA� D� � HA 
 HA

be bounded A�operators admitting an adjoint and

FD � IdHA
�K�� D�F � IdHA

�K�� K�� K� � K
HA��

Then F is an A�Fredholm operator�

�	



Proof� Let us consider a decomposition HA� for which the operator FD � �HA
�K� has the diagonal

form 
Lemma �������

HA �M�e�N�
��K��
 M�e�N� � HA�

and the decomposition of space HA satis�es the conditions of Theorem ����
� Let us consider the projection

P � HA �M�e�N� 
N��

It is a compact operator� P � End�HA� The image of the operator 
� � P �
� � K�� � 
� � P �FD is
exactly equal toM�� It is easy to see that up to an isomorphism


�� P �FD � 
�� P �
� �K�� � � � 
�P 
� �K��� �K� � � � eK��

D�
�� P �F � D�F �D�PF � � � eK��

where eK� � KA� eK� � KA� By Lemma ������ it is possible to suppose without loss of generality that
F � HA 
M� is an epimorphism� Otherwise� we will pass to the operator 
��P �F � Let us consider now
the decomposition for � �K� �

HA �M�e�N �
F�
M�e�N�

D�

�
M�e�N � � HA�

The composition D�F jM�
� M� 
 M� is an isomorphism� Therefore� since F � HA 
 M� is an

epimorphism� F �M�e�N � 
M� mapsM� isomorphically in M� and KerF � N �� M� � F 
M�� �
F 
N ��� Let us show that F 
M�� 	 F 
N�� � 	� Decompose for this purpose F into a composition

M�e�N � 
 
M� e�N ���KerF �M� e�
N ��KerF �
eF�
M��

where eF is an isomorphism� Therefore

M� � F 
M��e� eF 
N ��KerF � � F 
M��e�F 
N ���

Since the A�module N � is �nitely generated� F 
N �� is �nitely generated too� We have obtained a de�
composition

HA �M� e�N � 
 F 
M��e��F 
N��e�N�� � HA�

where F jM�
�M� 
 F 
M�� is an isomorphism� �

Lemma ������ If bounded A�operators D� D� and F admitting an adjoint are such that FD and D�F
are A�Fredholm operators then F is an A�Fredholm operator�

Proof� By the de�nition of Fredholm property of FD and D�F we can �nd operators T and T � admitting
an adjoint such that


FD�T � � �K�
T �
D�F � � � �K��

By Theorem ������ the operator F is Fredholm� For T � for example� it is possible to take an operator

with the matrix

�

F���� 	
	 	

�
� where FD has the form

�
F� 	
	 F�

�
in the sense of De�nition ������

�

Remark ������ For A�Fredholm operators over W ��algebra A their properties are more similar to
properties of usual Fredholm operators� This problem we will discuss in Proposition ��
���
Remark ������ For applications to elliptic operators it is important to develop the theory for spaces
of the form l�
P�� It can be done similarly 
see �
����

��



��
 Representations of groups on Hilbert modules

In this section we assume that G denotes a compact group� First of all� we prove an equivariant variant of
the Kasparov stabilization theorem� Let us follow here the original proof ����� For closely related problems
see also �����
De�nition ����� For a C��algebra B put

HB ��
�X
i��


Vi �C B��

where fVig is a countable set of �nite�dimensional spaces� in which all irreducible unitary representations
G are realized 
up to isomorphism� and each representation repeats an in�nite number of times� the
B�Hilbert completion of the algebraic sum is carried out with respect to the norm given by the following
B�inner product on summands


x� � b�� x� � b�� �� hx�� x�iVi � b��b�� x�� x� � Vi�

Theorem ����� ���� Let B be a C��algebra with a continuous action of a group G and E be a countably
generated Hilbert G�B�module� The action is assumed to be unitary and agrees with the module structure
in the sense that

g
xb� � g
x�g
b�� hg
x�� g
y�i � g
hx� yi�� x� y � E � b � B� g � G�

Then there exists an equivariant B�isomorphism preserving the inner product

E � HB
�� HB �

Proof� Let us denote by E� the module E � considered as a B��module� Let us suppose that the action
of G on B� is extended from B by the formula g
�� � �� Let us assume that we know how to prove the
theorem for unital algebras� so that

E� �HB�
�� HB� �

whence
E �HB

�� 

E � HB�
��B �� 
E� �HB� �B �� 
HB� �B � HB�

Thus� we can restrict ourselves to the case of unital B�
Let fxkg be a countable system of generators of E and fekg be an orthonormal basis of HB and each

ek � vk � �B� where vk � Vs�k�� In other words� if fwkg is a union of some orthonormal bases of all Vj
then ek � wk � �B � Let fyig be a system of elements in E � HB � in which each element of the form
xk � 	 and 	 � ek is repeated an in�nite number of times� We can suppose that y� � 	 � e� and put
W� � 	 � V� � B� Let us assume that by induction we have already constructed subspaces W�� � � � �Wn

satisfying the following conditions


i� Wi is a C��nite dimensional G�invariant subspace in E � HB�


ii� each Wi has a basis 
z
�
i � � � � � z

K�i�
i � � 
f�� � � � � fp� such that

hzji � zji i � �B� hzji � zsri � 	 for i �� r or j �� s�


iii� there exists m � m
n� such that

W� � � � ��Wn � Em �� E �
�

mM
i��

Vi � B

	
�

and consequently 
W� � � � ��Wn�B � Em�

iv� the distance between yn and 
W� � � � ��Wn�B does not exceed ��n�

��



Remark that it follows from items 
i� and 
ii� that the modules WiB are pairwise orthogonal and G�
invariant� as well as 
W�� � � ��Wn�B� The last module is free� so by Lemma ������ it has an orthogonal
complement� which is G�invariant due to the unitarity of the action�

Let us pass to the construction of Wn��� Put

y�n�� ��
pX

j��

fjhfj � yn��i� y��n�� � yn�� � y�n���

Then for any w � 
W� � � � ��Wn�B

hw� y��n��i � h
pX

j��

fjbj� yn�� �
pX

j��

fjhfj � yn��ii �
pX

j��

b�j �hfj � yn��i � hfj � yn��i� � 	�

As by the de�nition of the sequence yj the element yn�� lies either in E or in some Vi � B� so we have
y��n�� � Em� for some m� 
 m� Let us consider the orthogonal complement Sn�m� for 
W� � � � ��Wn�B
in Em� � It is an invariant module and y��n�� � Sn�m� � By the Mostow theorem about periodic vectors ����
the elements with C��nite dimensional orbits are dense in Sn�m� � Hence one can �nd a vector z � Sn�m�

such that kz � y��n��k 
 �
�n�� and R �� Gz is an invariant �nite�dimensional subspace of Sn�m� � As z

is a totalizing vector� so R is an irreducible G�module� Therefore there exists m�� 
 m� such that there
exists an equivariant isomorphism ( � R 
 Vm�� � Let fh�� � � � � hkg be an orthonormal basis of Vm�� and
ri �� (��
hi�� i � �� � � � � k� Then for the corresponding irreducible matrix representation T � G 
 U 
k�
we have

g
hi� �
kX

j��

T ji 
g�hj � g
ri� �
kX
j��

T ji 
g�rj � g � G�

Since R � Em� and m�� 
 m�� R is orthogonal to Vm�� � More precisely� each element of R is orthogonal to
Vm�� � B in E �HB � Hence hri� hji � 	 for any i and j� Let

z ��
kX
i��

ri�i� �i � C� � ��

�
kX
i��

j�ij�
	���

� �� r�i �� ri � 
hi � �B� � �


�n� ���
�

Then hr�i� r�ji � hri� rji � f
�n � ���g���ij and the matrix L �� khr�i� r�jikki�j�� is positive and invertible
in Mk
C� � Mk
B�� Let D � kdjik �� L���� � Mk
B� and r��i ��

Pk
j�� r

�
jdji� Let us take Wn�� equal

to the complex linear span of vectors r��i � i � �� � � � � k� or� what is the same� to the span of r
�
i� as D has

complex coe$cients� Then Wm�� � Em�� and

hr��i � r��j i �
kX

p�q��

hr�pdpi� r�qdpji � 
D�LD�ij � �ij�

Since all hi and ri are orthogonal to W� � � � � � Wn� then Wn�� is orthogonal to it too� Further� let

F �� L���� so that r�i ��
Pk

j�� r
��
jFji� Then

g
r��i � � g

�� kX
j��

r�jdji

�A �
kX
j��


gr�j�dji �
kX
j��

�
grj � 
ghj � �B� � �


�n� ���

�
dji

�
kX

j��

�
kX

s��

T sj 
g�rs �

�
kX

s��

T sj 
g�hs � �B
	
� �


�n� ���

	
dji

�
kX

j��

kX
s��

T sj 
g�

�
rs � 
hs � �B� � �


�n� ���

�
dji �

kX
j��

kX
s��

T sj 
g�r
�
sdji

�
kX
j��

kX
s��

T sj 
g�

�
kX
t��

r��t Fts

	
dji �

kX
t��

r��t

�� kX
j��

kX
s��

T sj 
g�Ftsdji

�A � Wn���

��



Thus Wn�� is G�invariant� Let us estimate the distance by putting z� �
kP
i��

r�i�i� so that

�
z�Wn��� � �
z� z�� �

�����
kX
i��


ri � r�i��i

����� �
�����

kX
i��


hi � �B� � �


�n� ���
�i

����� � �


�n� ���
�
�����

kX
i��

hi�i

�����

�
�


�n� ���
�
�

kX
i��

j�ij�
	���

�
�


�n� ��
�

�
kP
i��

j�ij�
����

�
kP
i��

j�ij�
����

� �



�


�n� ��
�

Therefore

�
yn��� 
W� � � � ��Wn�B� � �
y��n��� z� � �
z�Wn��B� � �

�n� �
� �
z� z�� � �

n� �


�

n
�

Thus� by induction� the C�subspaces Wi with properties 
i� � 
iv� are de�ned for any i� From the explicit
expression for r�i we obtain that Wn is isomorphic to some Vi� i� e�� is irreducible� Further� the B�Hilbert
completion ofM 
i� e�� the closure in E �HB� of the algebraic orthogonal sum of modulesWnB gives the
whole E �HB � Indeed� by the property 
iv� the algebraic sum is dense in E �HB � So�M�� E �HB � Now
it is proved that M is isomorphic to HB � i� e� that each irreducible representation repeats inde�nitely
many times among WnB� Let us suppose the opposite� then M�HB

�� HB � or

E �HB � E � HB �HB
��M�HB

�� HB� �

Let us prove now the theorem of decomposition of representations ����� LetM be a Hilbert B�module
with a strongly continuous unitary representation G

T � G
 U 
M� � End�B
M�� g 

 Tg�

and suppose that the group acts trivially on B� Let now fVsg be a complete collection of pairwise
nonequivalent unitary representations of G� ds be their dimensions� and Ds

pq be their matrix elements�
which are continuous functions on G� For an invariant normalized Haar measure dg on G we de�ne an
operator

P s
pq �M
M� P s

pq
x� �� ds

Z
G

Ds
pq
g�Tg
x� dg� 
�
�

As for a �xed x � M a product of continuous complex�valued function by a continuous module�valued
function is integrated and as the group is compact� so the integral converges to some element M� We
obtain a bounded operator� Indeed�

kP s
pqxk � ds

Z
G

���Ds
pq
g�

���kTg
x�k dg � ds sup
g�G

���Ds
pq
g�

���kxk�
Therefore

kP s
pqk � ds sup

g�G

���Ds
pq
g�

��� �
It is well known ��� I�x���� Theorem ��� thatZ

G

Ds
ij
g�D

s�
mn
g� �



	� s �� s��
�
ds
�im�jn� s � s�� 
���

We need the following Peter�Weyl theorem�

Theorem ����� ��� I�x���� Theorem �� The functions pdsDs
jk
g� form a complete orthonormalized system

in L�
G��

Lemma ����	 The operators P s
pq have the following properties

��




i� P s
pq admits an adjoint and


P s
pq�

� � P s
qp� 
���


ii� the following equality is ful�lled

P s
pqP

s�

p�q� � �ss
�

�qp�P
s
pq� � 
���


iii� the following equalities are ful�lled

TgP
s
jm �

dsX
i��

Ds
ij
g� P

s
im� 
�	�

P s
jmTg �

dsX
i��

Ds
mi
g� P

s
ji� 
���

Proof� First of all we remark that for unitary operators inM the mapping F 

 F � is continuous in the
strong operator topology� In other words for unitary operators the strong continuity implies the ��strong
one� Indeed�

k
F �� � F ��xk � k
F ��� � F���xk � kF �
F ��� � F���Fzk � kFz � F �zk 
 	�

Therefore it is possible to take T �g instead of Tg in 
�
�� and then take it out of the integral� More precisely�
the �rst equality in the following chain


P s
pq�

� � ds

Z
G

Ds
pq
g�T

�
g 
x� dg � ds

Z
G

Ds
pq
g

���Tg
x� d
g��� � ds

Z
G

Ds
qp
g�Tg
x� dg � P s

qp

has to be veri�ed at �rst at the level of integral sums� and passage to the limit is possible due to the
indicated ��strong continuity� Remaining equalities in the chain above are obtained by the invariance of
Haar measure and by the relations T �g � T��g � Tg�� � The item 
i� is proved�

It follows from 
�
� that

P s
pqP

s�

p�q� � dsds�

Z
G

Z
G

Ds
pq
g�D

s�
p�q�
g

��TgTg� dg dg��

Since TgTg� � Tgg� � by putting eg �� gg� we obtain from

Ds
pq
g� � Ds

pq
eg g���� � Ds
pr
eg�Ds

rq
g
���� � Ds

pr
eg�Ds
qr
g

��

and relations 
��� that

P s
pqP

s�

p�q� � dsds�

Z
G

Ds
qr
g

��Ds�
p�q� 
g

�� dg� �
Z
G

Ds
pr
eg�Teg deg � ds��

ss� �

ds�
�qp��rq�P

s
pr � �ss

�

�qp�P
s
pq� �

To prove the item 
iii� let us remark that

TgP
s
jm
x� � ds

Z
G

Ds
jm
h�Tgh
x� dh � ds

Z
G

Ds
jm
g

��h�Th
x� dh � ds

Z
G

dsX
i��

Ds
ji
g

���Ds
im
h�Th
x� dh

�

dsX
i��

Ds
ji
g

��� ds
Z
G

dsX
i��

Ds
im
h�Th
x� dh �

dsX
i��

Ds
ji
g

��� P s
im
x� �

dsX
i��

Ds
ij
g� P

s
im
x��

The second equality of this item can be proved similarly� �

Lemma ����� The operators P s
p �� P s

pp are selfadjoint pairwise orthogonal projections�

Proof� If we will rewrite the statement of the Lemma as


P s
p �
� � P s

p � P s
pP

s�

p� � �ss
�

�pp�P
s
p � 
���

then the proof can be immediately obtained from 
��� and 
���� �

��



Lemma ����� Let us put

P s ��
dsX
p��

P s
p �

dsX
p��

P s
pp�

The operators P s have the following properties


P s�� � P s� 
���

P sP s� � �ss�P
s� 
���

TgP
s � P sTg� 
���

In other words� P s are selfadjoint invariant pairwise orthogonal projections in M�

Proof� By the de�nition of P s the formulas 
��� and 
��� follow from 
��� at once� To verify the third
relation let us consider the character of the representation Vs

�s
g� ��
dsX
p��

Ds
pp
g��

which� like the trace� satis�es the relation �s
g� � �s
hgh���� One has also

P s � ds

Z
G

�s
g�Tg dg�

TgP
s � dsTg

Z
G

�s
g��Tg� dg� � ds

Z
G

�s
g��Tgg�g��Tg dg� � ds

Z
G

�s
gg�g���Tgg�g�� dg�Tg � P sTg � �

Lemma ����� Let us de�ne

Ms �� P s
M�� M
 ��
�M
s��

Ms� 
�
�

where the sum is supposed to be completed either as a Hilbert sum or �that is the same� as a closure in
M of the algebraic sum� Then

M
 �M� 
���

Proof� Let us assume that a C�linear functional f onM vanishes onM
 and that x � M is an arbitrary
vector� Then for any set of indices we have P s

ij
x� �M
� so that

	 � f
P s
ij
x�� � ds

Z
G

Ds
ij
g�f
Tg
x�� dg�

Therefore by the Peter�Weyl theorem ����� f
Tg
x�� � 	 holds almost everywhere� and by continuity it
vanishes everywhere� In particular� f
Te
x�� � f
x� � 	� Hence by the Hahn�Banach theoremM
 �M�
�

Theorem ����� ���� Let M be a Hilbert B�module with a strongly continuous unitary representation
G and let the group acts trivially on B� Let now fVsg be a complete collection of pairwise nonequivalent
unitary representations of G and

Ms �� HomG�C
Vs�M� � HomC
Vs�M� �� V �s �M

is a Hilbert B�module so that B�product is de�ned by the formula

h�� �i ��
dim VsX
i�j��

h�
hsi �� �
hsj�iM� hs�� � � � � h
s
dim Vs 
 orthobasis Vs�

�




Then for the Hilbert sum we have G�B�isomorphism

( �
�M
s��

(s �
�M
s��

Vs �Ms
��M� (s � v � � 

 �
v�� v � Vs� � �Ms�

and
(
Vs �Ms� �Ms�

where Ms is introduced in 
�
��

Proof� Let us remark �rst of all� that (s are algebraically injective� Indeed� let

	 � (s

�� dsX
j��

hsj�j � �

�A � �

�� dsX
j��

hsj�j

�A �

Since by the Schur lemma � is either isomorphism� or 	� this equality can be true only if
Pds

j�� h
s
j�j � 	

or � � 	� But then
Pds

j�� h
s
j�j � � � 	�

By Lemma ����� it is su$cient to prove only that (s maps bijectively Vs �Ms toMs�
Let us remark that by puttingMs

i �� P s
i 
M� � P s

ii
M�� we obtain by relations 
��� that the operators
P s
ij realize isomorphisms

P s
ij �Ms

j 
Ms
i �

ThusMs �
dsL
j��

Ms
j is a sum of isomorphic modules�

Let fhs�� � � � � hsdsg be that orthobasis of Vs� with respect to which the matrix elementsDs
ij were de�ned�

Let us de�ne a homomorphism

&s � Vs � �Ms
��
Ms� &s
hsj � x� � P s

j�
x�� 
���

where we have taken Ms
� in square brackets to underline� that there is no action of G on it� By the

properties of the operators P s
j� the map &

s is an isomorphism� Since by 
�	�

Tg&
s
hsj � x� � TgP

s
j�
x� �

dsX
i��

Ds
ij
g� P

s
i�
x��

and

&s
g
hsj�� x� � &s

�
dsX
i��

Ds
ij
g�h

s
i � x

	
�

dsX
i��

Ds
ij
g�P

s
i�
x��

the map &s is equivariant� Further� there is a map

)s �Ms
� 
Ms� )s
x�
v� �� &s
v � x��

Then
(s � 
Id Vs �)s�
v � x� � &s
v � x��

As we have an isomorphism on the right and as (s is algebraically injective� so (s is an isomorphism 
see
Lemma �����	�� whence )s is an isomorphism� In particular� the images of (s coincide withMs and are
orthogonal to each other� Hence ( is topologically injective and its image coincides withM� �

Remark ����� Let G�A�moduleM belong to the class P
A� of projective �nitely generated modules�
Then obviously Ms � HomG
Vs�M� � P
A�� Let us show that in the sum

L
s
only �nite number of

summands does not vanish� Let us denote by a�� � � � � as generators of M� Let us choose by the Mostow
lemma ���� C�periodic vectors b�� � � � � bs so close to a�� � � � � as� that they generate M as an A�module

see Lemma ������� By decomposing the �nite�dimensional G�C�module equal to the linear span of the
orbit Gbj� into irreducible modules� let us discover a new system of generators c�� � � � � cN � now lying in
irreducible G�C�modules� From here it is evident that the number of nonzero summands does not exceed
N�

��



Lemma ������ Let F � L 
 M � T � N 
 L be continuous maps of Banach spaces� S � FT be an
isomorphism and KerF � 	� Then F is an isomorphism�

Proof� Since S is an isomorphism� and F is bounded� T is topologically injective and its image T 
N � is
closed in L� Let it not coincide with L� Let us choose a vector 	 �� x � LnT 
N �� Then 	 �� F 
x� �� FT 
N ��
Really� let F 
x� � FT 
y� for some y � N � Since z � Ty � T 
N �� z � x �� 	� while F 
z � x� �
FT 
y� � F 
z� � 	� We have got a contradiction with KerF � 	� Hence� T is a topologically injective
epimorphism� i� e�� isomorphism� as well as F � ST��� �

Let us remind some facts about integrating operator�valued functions ����� Let X be a compact space�
A be a C��algebra� � � C
X� 
 A be an involutive homomorphism of unital algebras� F � X 
 A be
a continuous map and for each x � X the element F 
x� commutes with the image of �� In this case an
integral Z

X

F 
x� d� � A

can be de�ned as follows� Let X � �ni��Ui be an open covering and
Pn

i�� �i
x� � � be a subordinate
partition of unit� Let us choose points �i � Ui and form an integral sum

X

F� fUig� f�ig� f�ig� �

nX
i��

F 
�i��
�i��

If there exists the limit of such integral sums then it is called an integral�
If X is a Lie group G� it is natural to take as � a Haar measure � � C
X� 
 C� �
�� �

R
G
�
g� dg

and to de�ne for a norm continuous map Q � G
 B
H�Z
G

Q
g� dg �� lim
X
i

Q
�i�

Z
G

�i
g� dg�

where the algebra A is realized as a subalgebra in the algebra B
H� of bounded operators on a Hilbert
space H� If Q � G
 P�
A� � B
H�� then since RG �i
g� dg � 	� we obtain thatX

i

Q
�i� �
Z
G

�i
g� dg � P�
A� and

Z
G

Q
g� dg � P�
A�


the positive cone P�
A� is convex and closed�� Hence we have proved the following lemma�

Lemma ������ Let Q � G
 P�
A� be a continuous function� Then for the integral in the sense of ����
the following inequality holds Z

G

Q
g� dg � 	� �

Theorem ������ �

� Let GL � GL 
A� be the complete general linear group� i� e� the group of invertible
operators from End l�
A�� and suppose that for the group G a representation g 

 Tg 
g � G� Tg � GL �
is given� and that the map

G� l�
A�
 l�
A�� 
g� u� 

 Tgu

is continuous�
Then there exists an A�inner product on l�
A� equivalent to the initial one �i� e� generating an equiv�

alent norm� and such that the representation g 

 Tg is unitary with respect to this new product�

Proof� Let h � i� be the initial inner product� For any u and v from l�
A� there exists a continuous map
G
 A� x 

 hTxu� Txvi�� Let us de�ne a new product by the formula

hu� vi �
Z
G

hTxu� Txvi� dx�

where the integral can be considered in the sense of any of two de�nitions in ���� p� ��	�� since the
map is continuous with respect to the C��algebra norm� It is easy to see that this new product sets an
A�Hermitian map l�
A�� l�
A�
 A and that by Lemma ������ hu� ui � 	� Let us show that this map is

��



continuous� Let us �x an arbitrary u � l�
A�� Then x 

 Tx
u�� G
 l�
A� is a continuous map de�ned
on a compact space� thus the set fTx
u� jx � Gg is bounded� Therefore� by the principle of uniform
boundedness ��� v� ��

lim
v��

Tx
v� � 	 
���

is uniform on x � G� If u is �xed� then

kTx
u�k �Mu � const

and by the equality 
��� one has

khu� vik � k
Z
G

hTx
u�� Tx
v�i� dxk
� Mu � vol G � sup

x�G
kTx
v�k 
 	 
v 
 	��

We have obtained continuity at the point 	� hence on the whole space l�
A� � l�
A�� For Txu �

a�
x�� a�
x�� � � �� � l�
A� the equality hu� ui � 	 takes the formZ

G

�X
i��

ai
x�a
�
i 
x� dx � 	�

Let A be realized as a subalgebra of the algebra of bounded operators on a Hilbert space L with an inner
product 
 � �L� For each p � L we have

	 �

����Z
G

�X
i��

ai
x�a
�
i 
x� dx

�Ap� p

�A
L

�

Z
G

� �X
i��

ai
x�a
�
i 
x�p� p

	
L

dx �

Z
G

� �X
i��


a�i 
x�p� a
�
i 
x�p�L

	
dx


cf� ������ Therefore ai
x� � 	 almost everywhere� therefore ai
x� � 	 for all x by continuity and Txu � 	�
In particular� u � 	�

Since each operator Ty is an automorphism� we obtain

hTyu� Tyvi �
Z
G

hTxyu� Txyvi� dx �
Z
G

hTzu� Tzvi� dz � hu� vi�

Now we show the equivalence of two norms� which� in particular� imply continuity of the representation�
There is a number N 
 	 such that kTxk� � N for any x � G� Hence by ���� we have

kuk� � khu� uikA � k
Z
G

hTxu� Txui� dxkA

�
�
sup
x�G

kTxuk�
��

� N�
kuk����

On the other hand� applying Theorem ����� and Lemma ������� we obtain that

hu� ui� �

Z
G

hTg��Tgu� Tg��Tgui� dg �
Z
G

kTg��k�hTgu� Tgui� dg

�
Z
G

N�hTgu� Tgui� dg � N�

Z
G

hTgu� Tgui� dg � N�hu� ui�

Then 
kuk��� � khu� ui�kA � N�khu� uikA � N�kuk�� �

Remark ������ Since l�
P � is a direct summand in l�
A�� the previous theorem remains valid for l�
P �
and any other countably generated moduleM�

��



Remark �����	 Before averaging we had had operators� which� in general� had not admitted an adjoint�
and after averaging we have obtained unitary operators out of them� In relation with this remark the
following problem arises� Is it true� that if a given operator represents an element of compact group�
then it admits an adjoint* The negative answer to this problem is contained in Example ������ as a
decomposition into direct 
topological� sum de�nes a representation of the group Z��Z�

Corollary ������ �
�� Let M � M�e�M� be a topological decomposition into a direct sum of closed
Hilbert modules �not necessarily orthogonal�� Then there exists a new inner product on the module M
equivalent to the initial one� with the respect to which the indicated decomposition is orthogonal�

Proof� Let us de�ne an operator J �M�
M by the equality

Jx �



x� if x �M��
�x� if x �M��

It is possible to consider the operator J as a representation of the group Z��Z on the moduleM� and by
Theorem ������ the inner product hx� yi� � hx� yi�hJx� Jyi is equivalent to the initial one� Orthogonality
ofM� andM� with the respect to this inner product is evident� �

In Theorem ������ �
�� we will show how the averaging theorem ������ can be generalized from the
case of compact group to the case of amenable group� but only for Hilbert W ��modules�

� Hilbert modules over W ��algebras

��� W ��algebras

Detailed information about W ��algebras can be found in the books �
�� ��� ��� 
	� ���� We recommend
also the original papers of Murray and von Neumann ���� which are are still actual� We list here the basic
de�nitions and necessary facts�

Topologies on B
H�� Besides the norm topology we will consider on the algebra B
H� of bounded
linear operators on a Hilbert space H also a number of other locally convex topologies� which we de�ne
by sets of seminorms on B
H�� Let a � B
H�� �� �i� �� �i � H�

�� The 	�weak topology is de�ned by the seminorms

p
a� �

�����
�X
i��


a�i� �i�

����� �
�X
i��

k�ik� 
��

�X
i��

k�ik� 
��

�� The 	�strong topology is de�ned by the seminorms

p
a� �
�X
i��

ka�ik �
�X
i��

k�ik� 
��

�� The 	�strong� topology is de�ned by the seminorms

p
a� �
�X
i��


ka�ik� ka��ik�����
�X
i��

k�ik� 
��

	� The weak topology is de�ned by the seminorms p
a� � j
a�� ��j�
�� The strong topology is de�ned by the seminorms p
a� � ka�k�
�� The strong� topology is de�ned by the seminorms p
a� � 
ka�k� ka��k�����
On bounded subsets in B
H� the 	�weak topology coincides with the weak topology� the 	�strong

topology coincides with the strong� and the 	�strong# topology coincides with the strong# topology�
A commutant of a subset R � B
H� is the set R
 �� fa � B
H� � ar � ra for each r � Rg� A

bicommutant of set R is the set R

 � 
R
�
�

Theorem ����� 
von Neumann bicommutant theorem� Let A � B
H� be an involutive subalgebra�
Then the following conditions are equivalent	

�	




i� the algebra A contains the identity operator and is closed with respect to the 	�weak topology�


ii� the algebra A contains the identity operator and is closed with respect to the 	�strong topology�


iii� the algebra A coincides with its bicommutant� A

 � A�
In particular� it follows from here that if A � B � B
H� are two subsets then A

 � B

�

De�nition ����� An involutive subalgebra in B
H� is called a von Neumann algebra if it satis�es the
conditions of Theorem ������

In the von Neumann algebras there exists the polar decomposition� any element a � A can be be
represented in a unique way as a � uh� where u is a partial isometry� and h is a positive element of the
algebra A� and Ker u � Ker h�

Universal enveloping von Neumann algebra�
Let � be a positive linear functional on a C��algebra A� 
���H�� be a cyclic representation of algebra

A on a Hilbert space H� constructed with the help of the GNS�constructions� Let us put


��H� �
M
��A�

�


���H���

where A�� denotes the set of all positive linear functionals on the C��algebra A� The representation

��H� is called universal� The universal representation of the C��algebra contains any representation of
this algebra as a subrepresentation�

Theorem ����� The second dual space A�� for a C��algebra A equipped with the 	
A��� A���topology is
homeomorphic to the bicommutant A

 of algebra A � B
H� with respect to the universal representation
equipped with the 	�weak topology�

The von Neumann algebra A


u� where bicommutant is taken with respect to the universal representation�

is called a universal enveloping vn Neumann algebra for the C��algebra A and is denoted by A��� Any
homomorphism of C��algebras A�
B admits a natural extension up to a homomorphism of the second
dual spaces A���
B��� If A � B
H�� and A�
B
H� is the universal representation then H� � H and
A

 � A



u
�� A���

W ��algebras� The notion of W ��algebra allows to speak about von Neumann algebras without rela�
tion with a concrete Hilbert space where they act�

De�nition ����	 A C��algebra A� which� as a Banach space� is dual to some Banach space F � A � F ��
is called a W ��algebra�

A Banach space F is called pre�dual for A�
De�nition ����� A linear functional � on the von Neumann algebra A is called normal � if for any
increasing net a
 � A� � � +� with the least upper bound a � A the value �
a� is the least upper bound
of the set �
a
��

Theorem ����� Let A be a W ��algebra� Then there exists a unique �up to an isomorphism� pre�dual
space for A� which coincides with the space of all normal linear functionals on A�
The pre�dual space of a W ��algebra A we will denote by A�� By P we shall denote the set of normal
positive functionals on A� P � A�� The pre�dual space A� is the linear span of the set P �

��� Inner product on dual modules

Hilbert modules overW ��algebras we shall call HilbertW ��modules� Some aspects of the theory of Hilbert
C��modules become more simple in the W ��case�

Theorem ����� 
����� Let M be a Hilbert A�module� An A�valued inner product h�� �i admits an exten�
sion to the Banach module M�� making it a self�dual Hilbert A�module� In particular� the extended inner
product satis�es the equality hf� bxi � f
x� for all x � M� f � M��

��



Proof� Let f� g � M�� Our task is to de�ne an inner product of these functionals hf� gi� Let us de�ne
for this purpose a map ( � P�
C by the formula (
�� � 
f�� g���� where � � P is a normal positive
functional onA� and let us show that the map ( admits an extension to the set A� of all normal functionals
on A� For this purpose the following two technical Lemmas will be necessary�
Lemma ����� Let ��� � � � � �n � C and �� � � � � �n � P be such that

Pn
i�� �i�i � 	� Then

Pn
i�� �i(
�i� �

	�

Proof� Let us consider a normal positive functional � �
Pn

i�� �i� Then � � �i� i � �� � � � � n� If x� y �M
then by the assumption

nX
i��

�i
V
�
���iV���i
x �N��� y � N��� �

nX
i��

�i
x� N�i � y �N�i ��i �
nX
i��

�i�i
hx� yi� � 	�

therefore
Pn

i�� �iV
�
���i

V���i � 	� Remark that by 
������

nX
i��

�i(
�i� �
nX
i��

�i
f�i � g�i��i �
nX
i��

�i
V���if�� V���ig���i �
nX
i��

�i
V
�
���iV���if�� g��� � 	�

It means� that the map ( can be extended to A�� �

Lemma ����� The map ( is bounded�

Proof� It is possible to present an arbitrary normal functional � � A� as � � �� � �� � i
�� � �	��

where �i � P and
P	

i�� k�ik � � k�k� Then

j(
��j �
	X
i��

j
f�i � g�i��i j �
	X
i��

kf�ik�i kg�ik�i �
	X
i��

k�ikkfk kgk � � kfk kgkk�k

as required� �

Let us continue the proof of the theorem� We have de�ned a linear functional on A�� which is also
denoted by (� Since A is isomorphic to the space of linear functionals on the pre�dual space A� �
���
there exists a unique element hf� gi � A such that (
�� � �
hf� gi� for all � � A�� in particular�

f�� g��� � �
hf� gi� for all � � P � Sesquilinearty of the de�ned map h�� �i �M� �M��
A follows from
linearity of the map f 
�
 f� fromM� to H� for � � P � Let us show that h�� �i satis�es the properties

i� � 
iv� of De�nition ������


i� The inequality hf� fi � 	 follows from the fact� that for all � � P we have �
hf� fi� � 
f�� f��� � 	�

ii� Let hf� fi � 	 for f � M�� Then f� � 	 for all � � P � hence �
f
x�� � 	 for all x � M� whence

it follows that f � 	�

iii� Since for any � � P

�
hf� gi� � 
f�� g��� � 
g�� f��� � �
hg� fi� � �
hg� fi���

we conclude that hf� gi � hg� fi��

iv� Let a � A� � � P � Let us de�ne a functional �a on the algebra A by the equality �a
b� � �
a�b��

b � A� Then �a � A� and �a �
P	

i�� �i�i� where �i � C� �i � P � Let us put � � � �
P	

i���i� then �
is a positive functional and � � �� ��� � � � � �	� It follows from Proposition ����� that

�
a�hf� gi� �
	X
i��

�i�i
hf� gi� �
	X
i��

�i
f�i � g�i��i �
	X
i��

�i
f�i � V	��ig	��i �

But for each x �M
	X
i��

�i
f�i � V	��i
x�N	���i �
	X
i��

�i
f�i � x� N�i��i �
	X
i��

�i�i
f
x�� � �a
f
x�� � �
a�f
x��

� �

f � a�
x�� � 

f � a��� x�N��� � 

f � a��� V	��
x� N	����

��



Since the subspace M�N	 is dense in H	� for any � � P the following equality holds

�
a�hf� gi� �
	X
i��

�i
f�i � V	��ig	��i � 

f � a��� V	��g	�� � 

f � a��� g��� � �
hf � a� gi��

hence a�hf� gi � hf � a� gi� Passing to adjoints� we obtain also hf� gia � hf� g � ai�
The thus obtained inner product on M� is an extension of the inner product from M� Indeed� if

x� y �M� � � P then

�
hbx� byi� � 
bx�� by��� � 
x� N�� y � N��� � �
hx� yi��
Hence hbx� byi � hx� yi� Further� if f �M�� then

�
hf� bxi� � 
f�� bx��� � �
f
x���

therefore hf� bxi � f
x�� Let us show thatM� is complete with respect to the norm k�kM� de�ned by the
constructed inner product� OnM� there exists also the norm k�k de�ned as the norm of linear maps from
M to A� with the respect to which the space M� is complete� Let us prove that k�kM� � k�k� Since

f
x��f
x� � hbx� fihf� bxi � kfk�M� � hx� xi�

we obtain that kfk � kfkM� � But� since kf�k � kfk k�k��� for each � � P �

kfk�M� � khf� fik � supfkf�k�� � � � P� k�k � �g � kfk� �

and k�kM� � k�k�
So� it is proved thatM� is a Hilbert A�module� It remains to verify that it is self�dual� Let F � 
M����

The restriction of F to M � M� is an element of the module M�� therefore it is possible to �nd a
functional f � M� such that F 
bx� � f
x� for all x � M� Let us de�ne a functional F� � 
M��� by the
equality

F�
g� � F 
g�� hf� gi� g �M��

It is obvious that F�
bx� � 	 for all x � M� We have to verify that F�
g� � 	 for all g � M�� Let � � P �
Choose a sequence fyn � N�g in M�N�� converging to g�� Since F� is bounded� we can �nd a number
K such that F�
h�

�F�
h� � Khh� hi for all h � M�� For all n � �� �� � � �

�
F�
g�
�F�
g�� � �
F�
g � byn��F�
g � byn�� � K�
hg � byn� g � byni��

But since

�
hg � byn� g � byni� � 
g�� g��� � 
yn �N�� g��� � 
g�� yn � N��� � 
yn � N�� yn � N���

� kg� � 
yn � N��k�� �

�
hg � byn� g � byni�
 	� therefore
�
F�
g�

�F�
g�� � 	� 
��

Since the equality 
�� is true for any normal functional � � P � we obtain that F�
g� � 	� �

��� Hilbert W ��modules and dual Banach spaces

Proposition ����� Let M�N be Hilbert C��modules over a W ��algebra A� T � M�
N be a bounded
operator� T � HomA
M�N �� Then there exists a unique extension of the operator T up to an operatoreT �M��
N ��

Proof� Let us de�ne an operator T � � N�
M� by the equality 
T�y�
x� �� hy� Txi� x � M� y � N �
Since

��
T�y�
x�
�� � kTk kxkkyk� the operator T� is bounded�

��T�y
�� � kTk kyk� For any a � A


T�
y � a��
x� � hy � a� Txi � a�hy� Txi � 

T�y� � a�
x��

��



Therefore� the map T� is A�linear� Let us de�ne a map eT �M��
N � by the equality 
 eTf�
y� � hf� T�yi
for y � N � f � M�� Since eT � 
T���� the map eT is also a bounded A�module map� The equality

 eT bx�
y� � 
Tx�b
y� demonstrates that the operator eT is an extension of the operator T �

Let us show uniqueness of this extension� Let S �M��
N � be a bounded A�module map coinciding
with eT on the submodule cM � fbx � x � Mg � M�� Then their di�erence V � eT � S vanishes on cM�
Since the module M� is self�dual� the operator V has an adjoint operator V � � N ��
M�� If g � N ��
x �M then


V �g�
x� � hV �g� bxi � hg� V bxi � 	�
i� e� V � � 	� therefore V � 	� hence S � eT � �

Corollary ����� Let M be a Hilbert A�module� Then the map T 
�
 eT de�nes a monomorphism
End�A
M� � End�A
M�� � EndA
M��� �

Let us show that self�dual Hilbert W ��modules are dual Banach spaces� as well as the C��algebras of
operators acting on them�

Proposition ����� 
����� Let M be a self�dual Hilbert W ��module� Then M is a dual Banach space�

Proof� Let us introduce the denotation Mo for the Hilbert module M considered as a Banach space
with multiplication by scalars given by the formula � � x �� lx� x � Mo� Let us consider an algebraic
tensor product A� �Mo over the �eld C� where A� is a pre�dual space of normal functionals on A� Let
us equip the space A� �Mo by the maximal cross�norm and for x �M let us de�ne a linear functional
,x on A� �Mo by the formula

,x

�
nX
i��

�i � yi

	
�

nX
i��

�i
hyi� xi��

where ��� � � � � �n � A�� y�� � � � � yn �Mo� This functional is well�de�ned� Since�����,x
�

nX
i��

�i � yi

	����� � kxk
nX
i��

k�ik kyik �

it follows from the de�nition of the maximal cross�norm ��� that k,xk � kxk� Let us show that actually

k,xk � kxk� Let f�ng be a sequence of functionals of the norm � in A� such that j�n
hx� xi�j 
 kxk�� For
each element of the form �n � x � A� �Mo we have k�nk kxk � kxk and j,x
�n � x�j 
 kxk�� therefore
kxk � k,xk� Hence it is shown that the map x 
�
 ,x de�nes an isometric inclusionM� 
A� �Mo��� To
prove the statement it is su$cient to demonstrate that the set ,M � f,x � x �Mg is closed in 
A��Mo��
with respect to the weak# topology� because it would mean thatM is isomeric to the dual space of some
quotient space of A� �Mo� Let f,x�g be a net in M� converging to some element F � 
A� �Mo��
with respect to the weak# topology� For y � M let us de�ne a linear functional on A� by the formula
&y
�� � F 
� � y�� where � � A�� The functional & is bounded� k&k � kFk kyk� therefore there exists
a unique element f
y� � A satisfying the properties kf
y�k � kFkkyk and F 
� � y� � �
f
y��� for all
� � A�� The map f is linear� Let us show that it is A�linear as well� Let y � M� a� b � A� � � A�� Let
us de�ne a normal functional � � A� by the equality �
b� � �
a�b�� Then it follows from the equalities

�
f
y � a��� � F 
�� 
y � a�� � lim
�
,x�
� � 
y � a�� � lim

�
�
hy � a� x�i�

� lim
�
�
a�hy� x�i� � lim

�
�
hy� x�i� � F 
� � y�

� �
f
y�� � � �
a�f
y��� � �

f
y�a�� ��

which hold for any � � A� that f
y � a� � f
y�a� Since the moduleM is self�dual� we can �nd an element

x� �M such that f
y� � hx�� yi� therefore F � ,x�� hence ,M is closed in 
A� �Mo��� �

Consider the weak# topology on the dual Banach space M� Obviously a net fx�g inM converges to
an element x � M with respect to this topology i� �
hy� x�i��
�
hy� xi� for every � � A� and for every
y � M�

Some modi�cation of the previous reasoning allows to obtain also the following

Proposition ����	 
����� Let M be a self�dual Hilbert W ��module� Then the C��algebra End�A
M� is a
W ��algebra� �

��



��� Properties of Hilbert W ��modules

The elements of self�dual Hilbert W ��modules admit the following convenient representation 
an analog
of polar decomposition��

Proposition ��	�� 
����� Let M be a self�dual Hilbert W ��module� Any element x � M can be repre�

sented as x � z � hx� xi���� where z � M is such that hz� zi is the projection onto the image of hx� xi����
Such a decomposition is unique in the sense that if x � z� � a� where a � 	� and if hz�� z�i is the projection
onto the image of a then z� � z and a � hx� xi����
Proof� For x �M� n �N let us put

an � 
hx� xi� ��n����� xn � x � a��n �

Since hxn� xni � hx� xi
hx� xi� ��n���� kxnk � �� Let y �M be a point of accumulation of the sequence

fxng in the weak# topology 
which exists due to compactness of the unit ball�� Since
���an � hx� xi������
 	

and xn � an � x� then x � y � hx� xi���� Let p be the projection onto the image of hx� xi���� Then

phx� xi��� � hx� xi���p � hx� xi����

therefore x � y � phx� xi��� and
hx� xi � hx� xi���phy� yiphx� xi����

Hence�

hx� xi���
p� phy� yip�hx� xi��� � 	�
Since kyk � �� we have p� phy� yip � 	� therefore

hx� xi���
p� phy� yip���� � 	�

whence it follows that p
p� phy� yip���� � 	� hence p � phy� yip� Let us put z � y � p� Then z � hx� xi��� �
y � phx� xi��� � x� hz� zi � phy� yip � p and z � p � z�

To prove the uniqueness of the decomposition suppose that x � z� � a� where a � 	� and that hz�� z�i is
the projection onto the image of a� Then hx� xi � ahz�� z�ia � a�� therefore a � hx� xi��� and hz�� z�i � p�
Since hz� � z� � p� z� � z� � pi � 	� we obtain z� � z�p� Also one has

hz� xi � hx� xi��� � hz� z�ihx� xi����

i�e� 
p � hz� z�i�hx� xi��� � 	� whence we obtain that 
p � hz� z�i�p � p� hz� z� � pi � p� hz� z�i � 	� Now
it can be easily seen that hz � z�� z � z�i � 	� hence z� � z� and it completes the proof� �

Let fp�g be some set of projections in aW ��algebra A� For each of them the setM� � p�A � A has a
natural structure of one�generated projective Hilbert A�module� Similarly to the de�nition of the standard
Hilbert module we can de�ne the module ��M� as the set of sequences 
m��� m� � M� � A such
that the series

P
�m

�
�m� converges with respect to the norm in A� The dual Hilbert module 
��M���

is called an ultra weak direct sum of the modules M�� For self�dual Hilbert W
��modules we have the

following structural

Theorem ��	�� 
����� Let M be a self�dual Hilbert W ��module over A� Then there exists a set fp�g of
projections in A such that the module M is isomorphic to the ultra weak direct sum of the modules p�A�
�

Proposition ��	�� Let N � HA be a Hilbert submodule over W ��algebra A� If N� � 	 then the dual
module N � coincides with H�

A�

��



Proof� Let j � N�
HA be an inclusion of modules� The restriction of functionals f 
�
 f jN � f � H�
A�

de�nes a map j� � H�
A�
N � dual to j� If f � H�

A is such that f jN � 	 then f�N � and by assumption
one has f � 	� therefore the map j� is injective� Let us consider the composition of maps

i � j� � b � j � N �
 HA �
H �
A�
N ��

If n � N then i
n� � j�
dj
n�� � dj
n�jN � bn� therefore the map i coincides with the inclusion mapb� N �
N �� The dual map 
after the identi�cation of the �rst and second dual modules�


i� � i�� � i� � i�� � N � � N ���
H�
A�
N �

is an isomorphism� therefore the map i� should be surjective� therefore the map j� is surjective� �

Proposition ��	�	 Let A be a W ��algebra� R � HA be an A�submodule without orthogonal complement�
i�e� R� � 	 in HA� Then R� � H�

A�

Proof� It is su$cient to demonstrate that if orthogonal complement to a submodule R in HA is equal
to zero then the orthogonal complement to R in the module H�

A is equal to zero too� Let us assume
the contrary� Suppose that it is possible to �nd a functional f � H�

A such that f
r� � hf� ri �� 	 for
some r � R� But the series P�

i�� f
�
i ri is norm convergent in A� therefore there is a number n such that

f �n�
z� �� 	 for f �n� � 
f�� � � � � fn� 	� � � ��� But� as f �n� � HA� so we get a contradiction� �

��� Topological characterization of self�dual Hilbert W ��modules

Let A be aW ��algebra�M be a Hilbert A�module� P � A� be the set of normal states on A� Let us de�ne

see ����� two topologies on M with the help of sets of seminorms� A topology given by the system of
seminorms �
h�� �i����� � � P � we denote by ��� and a topology given by the system of seminorms �
hy� �i��
y � M� � � P � we denote by ��� In the case� when A � C andM is a Hilbert space� the topology �� is
the norm topology and the topology �� coincides with the weak topology� therefore in general these two
topologies do not coincide�

Theorem ����� 
����� Let M be a Hilbert W ��module� Then the following conditions are equivalent


i� the module M is self�dual�


ii� the unit ball B�
M� is complete with respect to the topology ���


iii� the unit ball B�
M� is complete with respect to the topology ���

Proof� Let us prove the implication 
i�� 
ii�� Assume for this purpose that the unit ball B�
M� is not
complete with respect to the topology ��� Let us denote by L the linear span of the completion of B�
M�
with respect to the topology ��� For the extensions of seminorms fromM to L we use the same notation�
By the assumption there exists an element r � LnM and a net fy�g� � � +� bounded with respect to the
norm� such that for any � � P and for any � 
 	 there exists some � � +� for which �
hr�y� � r�y�i� 
 �
for all � � +� � � �� For arbitrary x � M we have

j�
hy� � xi�� �
hy� � xi�j � j�
hy� � y� � xi�j � �
hx� xi�����
hy� � y� � y� � y� i���� � 
�� �
hx� xi�����

for all �� � � �� Therefore there exists in the W ��algebra A the limit 
with respect to the 	
A�A���
topology�

R
x� � lim
�
hy�� xi � A

for each x �M� The inequality

j�
hy� � xi�j � kxk sup
�
fky�k � � � +g

shows the continuity of the map R �M�
A� x 
�
 R
x�� It is obvious that the map R is an A�module
map� therefore R is a functional onM� By assumption the moduleM is self�dual� therefore there exists
an element z � M such that R
x� � hz� xi� Then lim� hy�� xi � hz� xi 
where the limit is taken in

�




	
A�A���topology�� therefore the net fy�g converges to the element z �M in the topology �� and r � z�
� a contradiction to our assumption�

Let us prove now the implication 
ii� � 
i�� The extension of the inner product to the dual module
M� we still denote by h�� �i� It is easy to see that the ideal hM�Mi � A is norm dense in the ideal
hM��M�i � A� therefore hM�Mi � A � hM��M�i � A� Let us consider at �rst the case� when a W ��
algebra A is 	�unital� Then there exists an exact normal state � � A� 
see ����� Prop� ����
�� Let fH��� �g
be the cyclic representation associated with �� The vector � � H is simultaneously cyclic and separating�
The linear space M with the inner product 
�� �� � �
h�� �i� becomes a pre�Hilbert space and the map
�
f
��� �M�
C� where f � M�� becomes a linear functional on M� Then one can �nd an element f	
in the completion of the space M with respect to the norm �
h�� �i���� such that 
f	 � x� � �
f
x�� for
all x �M� It means that there exists a sequence 
xi�� xi �M� i �N� such that

	 � lim
i��


xi � f	� xi � f	� � lim
i��

�
hbxi � f� bxi � fi� � lim
i��

�����
hbxi � f� bxi � fi���������� �
where by bx the image of the element x under the canonical inclusionM�M� is denoted� Since the vector
� is cyclic and separating� there exists the limit 
in the 	
A�A���topology on A� limi hbxi� f� bxi � fi � 	

see ����� Lemmas ������� �������� Therefore f � M and the moduleM is self�dual� Let us pass to the
general case� If a W ��algebra A is not 	�unital then it is possible to choose a directed set of projections
fp�g� � � +� p� � A such that for each � � + the algebra p�Ap� is a 	�unitalW ��algebra and lim� p� � �
where the limit is taken in the 	
A�A���topology� As it was proved earlier� the functional fp� on Hilbert
p�Ap��module p�M is an element of the module p�M for all � � +� But then there exists the limit 
in
the �� topology� of the net ffp�g� it belongs toM� and is equal to f � so self�duality of the moduleM is
proved�

It remains to show equivalence of conditions 
ii� and 
iii�� If B�
M� is complete with respect to the
topology �� then M is self�dual� therefore it is a dual Banach space with respect to the topology �� 
see
Prop� ������� hence B�
M� is complete with respect to the topology ��� Let us assume now that B�
M�
is complete with respect to the topology �� and fx�g� � � + is a bounded Cauchy ���net� For all y �M�
�� � � +� � � P we have

j�
hy� x�i� � �
hy� x�i�j� � �
hy� yi��
hx� � x� � x� � x�i�� 
��

As well as earlier� L denotes the linear span of ���completion of B�
M�� There exists the limit in L 
with
respect to the topology ��� lim� x� � t � L� It follows from the inequality 
�� that fx�g is a Cauchy net
with respect to the topology �� as well� But as the topology �� is weaker than the topology ��� so one has
L �M� therefore limits limi xi with respect to the topologies �� and �� coincide and are equal to t �M�
whence one gets the completeness ofM with respect to the topology ��� �

��� Fredholm operators over W ��algebras

In this section we denote by A an arbitrary W ��algebra� Let us prove that the properties of Fredholm
operators in this case are more similar to the properties of the C�Fredholm operators than in the general
C��case� We present here slightly modi�ed results of ��
�

Lemma ����� Let M be a self�dual Hilbert C��module over a W ��algebra A� For each closed submodule
N � M the biorthogonal set N�� � M is a Hilbert A�submodule and a direct summand of M� as well
as its orthogonal complement N��

Proof� The fact� that N�� � M is an A�submodule� is obvious by the de�nition of the orthogonal
complement� Let us consider the inclusion i � N 
 M and its adjoint map i� � M � M� 
 N ��
Since dual W ��modules are self�dual� i� admits an adjoint� and consequently its kernel is an image of a
selfadjoint projection� i� e� it has orthogonal complement inM� But

i�
m� � 	 � i�
m�
n� � 	 �n � N � hi
n��mi � 	 �n � N � m � N�� �

The example ��
�� below demonstrates that the situation� which di�eres from described in Lemma ��
���
can arise� for example� for Hilbert C��modules over the C��algebra A � C
�	� ����

��



Lemma ����� Let � be a bounded module morphism of a self�dual module M� Then the kernel Ker
��
of the map � is a direct summand in M and satis�es the equality Ker
�� � Ker
�����

Proof� By Propositon ����� the algebra EndA
M� � End�A
M� is a W ��algebra� therefore there exists
a polar decomposition in it

� � US� S � 	� U is a partial isometry� Ker � � KerU�

exists p � p� � p�� U 
�� p� � 	� pU�Up � p�

Ker � � KerU is the image of a selfadjoint projection �� p� �

Example ����� Notice that the kernel of bounded A�linear operators on Hilbert A�modules over arbi�
trary C��algebra A is not a direct summand� For example� consider the C��algebra A � C
�	� ��� of all
continuous functions on the interval �	��� as a Hilbert A�module over itself equipped with the standard
inner product ha� biA � a�b� De�ne the mapping �g by the formula �g
f� � g � f for the �xed function

g
x� �


 ��x� � � x � ���
	 � x � ���

and for every f � A� Then Ker
�g� equals the Hilbert A�submodule and 
left� ideal ff � A � f
x� �
	 for x � �	� ����g� being not a direct summand of A� but nevertheless� it coincides with the bi�orthogonal
complement to itself in A�

Corollary ����	 Let � � M 
 N be a bounded A�linear mapping� Then the kernel Ker
�� of � is a
direct summand of M and has the property Ker
�� � Ker
�����

Proof� Consider the self�dual Hilbert A�module L formed as the direct sum L � M� N equipped
with the A�valued inner product h�� �iM � h�� �iN � The mapping � can be identi�ed with a bounded A�
linear mapping �� on L acting on the direct summandM as � and on the direct summand N as the
zero operator� Since the kernel of �� is a direct summand of L which contains N by Lemma ��
��� its
orthogonal complement is a direct summand ofM� �

Example ����� Let A be the set of all bounded linear operators B
H� on a separable Hilbert space H
with the basis fei � i � Ng� Denote by k the operator k
ei� � �iei for a sequence f�i � i � Ng � co
R��
Then the mapping �k � A 
 A� �k � a 
 a � k is a bounded A�linear mapping on the left projective
Hilbert A�module A� But the image is not a direct summand of this A�module and is not even Hilbert
because direct summands of A are of the form Ap for some projection p of A� and �A � k should equal p�
The image of �k is a subset of the set of all compact operators on H� Notice that the mapping �k is not
injective�

The following statement under some restrictions can be proved in the C��case as well ���� ����

Proposition ����� Let M be a self�dual Hilbert module and fN � h�� �ig be arbitrary� Suppose there exists
an injective bounded module mapping � � M 
 N with the range property �
M��� � N � Then the
operator �
�������� is a bounded module isomorphism of M and N � In particular� they are isomorphic
as Hilbert A�modules�

Proof� The mapping � possesses an adjoint bounded module mapping �� � N 
M due to self�duality
of M� As ��� is a positive element of the C��algebra EndA
M� of all bounded 
adjointable� module
mappings on the Hilbert A�moduleM� so its square root 
������� is well�de�ned by the series


������� � k�k � lim
n��k
�

���k���
�
idM �

nX
k��

�k

�
idM � 
����

k
����k
�k	

with coe$cients f�kg taken from the Taylor series at zero of the complex�valued function f
x� �
p
�� x

on the interval �	���� Moreover� because

h
�������
x�� 
�������
x�i � h�
x�� �
x�i

��



and due to injectivity of � the mapping 
������� has trivial kernel� Notice that the range of 
�������
is ���dense in M� Indeed� for every A�linear bounded functional r
�� � h�� yi on the self�dual Hilbert
A�moduleM mapping the range of 
������� into the origin one has

	 � h
�������
x�� yi � hx� 
�������
y�i
for every x � M� Hence y � 	 as 
������� is injective and x � M was arbitrarily chosen�
Now consider the mapping �
�������� de�ned onM� Since 
������� has both ���dense range and trivial
kernel by the assumptions on �� its inverse unbounded module operator 
�������� is ���densely de�ned�
One gets

h�
��������
x�� �
��������
y�i � hx� yi
for every x� y from the 
���dense� domain of 
��������� Consequently the operator �
�������� can be
extended to a bounded isometric module operator on M by ���continuity� Its range is ���closed 
i�e� a
self�dual direct summand of N �� hence it equals N by assumption� �

Corollary ����� Let M be a self�dual Hilbert module and fN � h�� �ig be arbitrary� Every injective module
mapping from M into N is a Hilbert A�module isomorphism of M and of a direct summand of N �

Proposition ����� Let M and N be countably generated Hilbert modules and F � M 
 N be
a Fredholm operator� Then KerF and 
ImF �� are projective �nitely generated A�submodules� and
indexF � �KerF �� �
ImF ��� in K�
A��
Proof� Let M � M�

cLM�� N � N� � N� be the decompositions from the de�nition of A�Fredholm
operator�

F �

�
F� 	
	 F�

�
�M�

dMM� 
N� �N��

F� �M�
�� N�� F� �M� 
N��M� andN� are the projective �nitely generated modules� Let x � x��x��

x� � M�� x� � M� and F 
x� � 	� so 	 � F�
x�� � F�
x�� � N� � N�� Thus F�
x�� � 	� F�
x�� � 	�
so x� � 	 and x � M�� Thus KerF � KerF� � M�� By Lemma ��
�� KerF is a projective �nitely
generated A�module and has an orthogonal complement� So� by Corollary ��
��

F �

�� F� 	 	
	 F �� 	
	 	 	

�A �M�
dMM�

� � KerF 

�
N� � F 
M�

��
� dM


ImF ��

and indexF � �KerF �� �
ImF ���� �

The following example shows that the situations may be quite di�erent for general Hilbert C��modules
and injective mappings between them�
Example ����� Consider the C��algebraA � C
�	� ��� of all continuous functions on the interval �	��� as
a self�dual Hilbert A�module over itself equipped with the standard A�valued inner product ha� biA � a�b�
The mapping � � f
x� 
 x � f
x�� 
x � �	� ���� is an injective bounded module mapping� Its range has
trivial orthogonal complement� but it is not norm closed and� consequently� not a direct summand of A�
Nevertheless� the bi�orthogonal complement of the range of � with respect to A equals A�

Lemma ������ Let P and Q be self�dual Hilbert A�submodules of M� Then P 	Q is a self�dual Hilbert
A�module and a direct summand of M� Moreover� P �Q �M is a self�dual Hilbert A�submodule�
If P is projective and �nitely generated then the intersection P 	 Q is projective and �nitely generated
too� If both P and Q are projective and �nitely generated then the sum P �Q is projective and �nitely
generated too�

Proof� Let p �M � P �P� 
 P� be the canonical orthogonal projection existing by Proposition ������
Let pQ � p � Q 
 P�� Since Q is a self�dual Hilbert A�module pQ admits an adjoint operator and
Ker pQ � Q is a direct summand by Lemma ��
��� Consequently it is a self�dual Hilbert A�submodule of
Q �M� But Ker pQ � P 	Q� To obtain the second assertion one has to apply again the fact that every
self�dual Hilbert A�submodule is a direct summand by Proposition ������
If P is projective and �nitely generated then every its direct summand is projective and �nitely generated�
what proves the remaining assertion� �

For C��algebras it is possible to prove the following analog of Lemma ��
���

��



Proposition ������ Let A be a C��algebra� M and N be self�dual Hilbert A�modules� � �M 
 N be
a bounded A�linear mapping� Then the kernel Ker
�� of � coincides with its bi�orthogonal complement
inside M� In general� it is not a direct summand�

Proof� Let us assume that Ker
�� �� Ker
���� with respect to the A�valued inner product onM� Form
the direct sum L �M�N � The mapping � can be extended to a bounded A�linear mapping � on L if
we set

�
x� �



�
x� � x �M

	 � x � N �

Extend � further to a bounded A���linear operator on the corresponding Hilbert A���module L�� By
Lemma ��
�� both sets Ker
��� and 
Ker
������ are contained in the kernel Ker
�� of �� which is a
direct summand of L� and Ker
�� � Ker
���� holds� This contradicts the assumption� The second
assertion follows from Example ��
��� �

� Re�exive Hilbert C��modules

��� Inner product on bidual modules

For Hilbert C��moduleM over C��algebra A we shall de�ne the bidual Banach right A�moduleM�� as a
set of bounded A�homomorphisms from the dual moduleM� into A� It turns out that an inner product
onM can be extended to the bidual module for C��algebra A unlike the dual module� which admits an
extension of an inner product only in the case of W ��algebras�

Let x �M� f �M�� Put
-x
f� �� f
x���

The map x 
�
 -x is an isometric map from the A�moduleM into the A�moduleM���

k -xk � supfkf
x�k � f � M�� kfk � �g � kfk kxk � kxk �
k -xk � �

kbxk kbx
x�k � �

kbxk khx� xik � kxk �

For a functional F �M�� we de�ne a functional eF �M� by the formula

eF 
x� �� F 
bx��
Identifying M and cM � fbx � x � Mg � M� we obtain that eF is the restriction of F to M � M��
Remark that 
 -x�e� bx for all x � M� It is clear that the map F 
�
 eF is an A�module map fromM�� to
M� and

��� eF��� � kFk� We will check soon that this map is an isometry�
Let us de�ne an inner product h�� �i �M�� �M���
A by the equality

hF�Gi �� F 
 eG�� F�G �M��� 
��

It can be directly checked that hF � a�Gi � a�hF�Gi for a � A� Besides� for x� y �M one has

h -x� -yi � -x

 -y�e� � -x
by� � 
by
x��� � hy� xi� � hx� yi�
therefore the inner product de�ned by equality 
�� is an extension of the inner product onM� To check
out the properties of an inner product we need the following construction�

Consider the right A�module A�M� Besides the natural inner product h�� �i�� de�ned by the formulah
A� x�� 
b� y�i� � a�b�hx� yi� where a� b � A� x� y �M� we consider another inner product on the module
A�M� Let us take f �M�� f �� 	� and a number t 
 kfk and put

h
a� x�� 
b� y�if�t �� t�a�b� a�f
y� � f
x��b� hx� yi� 
��

�	



Properties 
iii� and 
iv� of the de�nition ����� hold obviously� Let us check the properties 
i� and 
ii�� The
�rst one is valid due to the inequality

h
a� x�� 
a� x�if�t � t�a�a� a�f
x� � f
x��a� hx� xi �
� t�a�a� a�f
x� � f
x��a�

�

kfk� f
x�
�f
x� 
��

� t�a�a� a�f
x� � f
x��a�
�

t�
f
x��f
x� 
��

�

�
ta�

�

t
f
x�

���
ta�

�

t
f
x�

�
� 	�

Suppose that h
a� x�� 
a� x�if�t � 	� Then equality should be reached at each step in 
�� � 
��� Subtracting
the line 
�� from the line 
��� we obtain


kfk�� � t���f
x��f
x� � 	�

therefore f
x� � 	� hence t�a�a � hx� xi � 	� and we can conclude that a � 	 and x � 	� so we have
checked validity of the property 
ii�� Thus� the module A �M with the inner product de�ned by the
formula 
��� is a Hilbert A�module� The norm on this module corresponding to this inner product we
denote by k�kf�t and the Hilbert module A�M equipped with this norm we denote by 
A�M�f�t� Notice

that k
	� x�kf�t � kxk� For x� y �M� a � A we have

k
f � a� bx�
y�k � ka�f
y� � hx� yik �
���h
a� x�� 
	� y�if�t��� � k
a� x�kf�t � k
	� y�kf�t � kyk � k
a� x�kf�t �

Therefore
k
f � a� bx�k � k
a� x�kf�t � 
��

Proposition 	���� 
����� Let N � M� be a submodule� containing the module cM� Then the norm of

any functional � � N � satis�es the equality k�k �
����j bM����

Proof� Without loss of generality we assume that k�k � �� De�ne a functional f � M� by the formula
f
x� �� �
bx�� x �M� Then kfk � �� It is necessary to prove the inverce inequality kfk � �� Take g � N
such that kgk 
 �� and put c � �
g� � A� For a � A� x �M we have

kca� f
x�k � k�
g � a� bx�k � kg � a� bxk � k
a� x�kg��

the last inequality follows from 
���� hence the map

fc � A �M�
A� 
a� x� 
�
 ca� f
x�

is a bounded modular map� kfck�A�M��
g��
� �� Therefore�

Fc
a� x�
�fc
a� x� � h
a� x�� 
a� x�ig�� 

�

for all a � A� x �M� From the estimate 

� we get

A�c�ca� a�c�f
x� � f
x��ca � f
x��f
x� � a�a� a�g
x� � g
x��a� hx� xi�
Taking a � ��g
x� we obtain

�g
x��c�cg
x� � f
x��f
x� � hx� xi� �
g
x��c�f
x� � f
x��cg
x���

But as
G
x��c�f
x� � f
x��cg
x� � g
x��c�cg
x� � f
x��f
x��

so
�g
x��c�cg
x� � hx� xi� f
x��f
x� � 
� � kfk��hx� xi�

��



hence� kg � c�k � �p
�

� � kfk������ and� therefore�

k�
g � c��k � kcc�k � kck� � �p
�

� � kfk������

The last inequality is valid for all g � N for which kgk 
 �� and as k�k � �� so the inequality � �
�p
�

� � kfk����� should be valid too� whence it follows that kfk � �� Thus� kfk �

����j bM��� � �� �

Remark that in a case when N � M� the proposition ����� means that the map F 
�
 eF is an
isometric inclusionM�� �M��

Proposition 	���� 
����� For all F �M�� one has hF� F i � 	 and kF� F ik � kFk��

Proof� Let F � M��� F �� 	� Put c � F 
 eF �� D � kFk� Let us show at �rst that D� � Sp
c�� For

t 
 D consider the inner product h�� �ieF �t on the module A �M� Since
��� eF � a� bx��� � k
a� x�keF �t for all


a� x� � A�M� the map

fc � A�M�
A� 
a� x� 
�
 F 
 eF � a� bx� � ca � eF 
x�
is bounded with a norm not exceeding D 
we mean here the norm de�ned by the inner product h�� �ieF �t��
Therefore


ca� eF 
x���
ca� eF 
x�� � D�h
a� x�� 
a� x�ieF�t� 
��

The inequality 
�� holds for all t 
 D and taking the limit t
 D we obtain


ca� eF 
x���
ca � eF 
x�� � D�
D�a�a� eF 
x��a� a� eF 
x� � hx� xi��
Taking a � �D�� eF 
x� we get

eF 
x��
D��c� ���
D��c� �� eF 
x� � D�
�D�� eF 
x�� eF 
x� � hx� xi��
hence� eF 
x��

D��c� ���
D��c� �� � �� eF 
x� � D�hx� xi�
Suppose that D� �� Sp
c�� Then it is possible to �nd number � 
 	 such that

eF 
x��
D��c� ���
D��c � �� eF 
x� � � eF 
x�� eF 
x�
for all x � M� But then eF 
x�� eF 
x� � D�

� � �
hx� xi�

whence we have

D� �
��� eF���� � D�

� � �

 D��

Obtained contradiction shows that D� � Sp
c�� But as

kck �
���F 
 eF ���� � kFk��� eF��� � kFk� � D��

so kck � D�� hence khF� F ik � kFk� and khF� F ik � Sp
hF� F i�� For an arbitrary element a � A we have

kacak �
���a�F 
 eF � a���� � khF � a� F � aik � Sp
hF � a� F � ai� � Sp
aca��

The following lemma concludes the proof�

Lemma 	���� 
����� Let an element c � A be such that the inclusion kacak � Sp
aca� holds for any
a � A� a � 	� Then c � 	� �

��



The proposition ����� shows that the inner product de�ned onM�� satis�es the conditions 
i� and 
ii�
of the de�nition ������ It remains to check the condition 
iii�� Notice that

hF � G�F �Gi � 	� hF � iG� F � iGi � 	�
hence these expressions are selfadjoint� Then


hF�Gi� hG�F i�� � hF�Gi� hG�F i� �i
hF�Gi � hG�F i�� � i
hF�Gi � hG�F i��
therefore hF�Gi � hG�F i�� The moduleM�� is a Hilbert A�module� as the operator norm onM�� coincides

by the proposition ������ with the norm de�ned by the inner product� Thus� we have proved the following
theorem�

Theorem 	���	 
����� The map h�� �i �M�� �M���
A de�ned by the formula hF�Gi � F 
 eG�� F�G �
M��� is an A�valued inner product on M��� The norm de�ned by this inner product coincides with the

operator norm on M��� The map F 
�
 eF is an isometric inclusion M�� �M�� �

Let us pass now to dual modules of the higher order� Let & � 
M����� De�ne then a functional f� �M�
by the formula

F�
x� �� &
 -x�� x �M�

Let further f � M�� De�ne &f � 
M���� by the formula

&f 
F � �� 
F 
f��
�� F �M���

The maps & 
�
 f� and f 
�
 &f are A�module morphisms� Consider their composition

M��
M����
M�� F 
�
 &f 
�
 f�f � 
��

As for any x �M we have
F�f 
x� � &f 
 -x� � 
 -x
f��

� � f
x��

so the composition 
�� is identical map� whence it follows that the map M��
M��� is an isometric
inclusion and the mapM����
M� is an epimorphism� Let us show� that the last map is also monomorphic�
Apply for this purpose the proposition ����� for the case N � M��� Let & � N � � M���� Then the
functional f� � M� is a restriction on cM of the functional &� f� � &j bM� Suppose that f� � 	� Then

by the proposition ����� we have k&k �
���&j bM��� � 	� therefore the map M����
M�� & 
�
 f�� is

monomorphic� Thus this map is an isometric isomorphism�

Corollary 	���� For a Hilbert C��module M one has 
M���� �M� and 
M����� �M��� �

So� the series of dual modulesM�M�� � � � stabilizes on the third entry and the inclusions

M�M�� �M���� �M� �M���

are isometric� Thus the modules M and M�� are Hilbert unlike the module M�� which is� generally
speaking� only Banach� Let us illustrate by examples that all possible variants can be realized�

M �M�� �M�� M ��M�� �M�� M �M�� ��M�� M ��M�� ��M��


i� Let A be a unital C��algebra and letM � Ln
A� be a free A�module with n generators� Then the
moduleM is autodual� therefore� M �M�� �M��


ii� Let A be a W ��algebra� By the theorem ����� for any Hilbert A�moduleM its dual moduleM� is
a self�dual Hilbert module� hence M ��M�� �M��


iii� ���� Let A � C�
	� �� be the C
��algebra 
without unit� of functions on a segment �	� �� vanishing at

zero�M � A� ThenM� � C�	� ���M�� � C�
	� �� andM �M�� ��M��


iv� ���� Consider the module C�
	� �� of functions on the segment �	� �� vanishing at the end points�
over the C��algebra A � C�
	� ��� In this case one has M� � C�	� ��� M�� � C�
	� ��� that is�
M ��M�� ��M��

De�nition 	���� A Hilbert C��moduleM is called re�exive� ifM�� �M�

In the following we will encounter with other examples of re�exive Hilbert modules�

��



��� Re�exivity of Hilbert modules over K�

In this section describe results of the paper �
��� Let K be the C��algebra of compact operators acting
on a separable Hilbert space H and let K� be the C��algebra of operators of the form a � ��K� where
� � C� K � K�
Theorem 	���� 
�
��� Any countably generated Hilbert K��module is re�exive�

Proof� According to the stabilization theorem ����� any countably generated Hilbert module is a direct
summand in the standard module l�
K��� therefore it is su$cient to prove re�exivity of the module
l�
K��� The proposition ����� gives a description of the dual module�

l�
K��� � ff � 
fi� � fi � K�� sup
N

�����
NX
i��

F �i fi

����� 
�g�

Lemma 	���� If f � 
fi� � l�
K���� K � K� f �K � 
fiK� � l�
K���

Proof� Since the operator K can be approximated by �nite�dimensional operators� it is su$cient to prove
the lemma in the case when K is �nite�dimensional� Notice that the operator 
fiK�

�
fiK� � K�f�i fiK
is a positive operator whose kernel contains KerK and whose image is contained in ImK�� As dimImK�
and codim KerK are �nite� the norm convergence of the series

P�
i��
fiK�

�
fiK� follows from its weak
convergence� �

Let F � l�
K����� Put Fi � F 
bei�� � K�� where feig is the standard basis of l�
K��� bei � l�
K����
SinceM�� �M� for any Hilbert moduleM� the sequence eF � 
Fi� is an element of the module l�
K����
Let us prove that the series

P�
i�� F

�
i Fi converges in the C

��algebra K� to the element F 
 eF � � hF� F i�
Let K � K be a �nite�dimensional operator in H� By the lemma �����

hF� F iK � hF� F �Ki �
�X
i��

F �i FiK�

therefore�

K�hF� F iK �
�X
i��

K�F �i FiK�

and for any � � H
�X
i��


K�F �i FiK�� �� � 
hF� F iK��K���

where 
�� �� is a 
scalar� inner product on H� Let � � B�
H�� where B�
H� is the unit ball in H� Choose
an element � � H and a �nite�dimensional operator K� so that � � K��� Then

�X
i��


Fi�� Fi�� � 
hF� F i�� ���

Therefore for any � �����
�X
i��


F �i Fi�� ��

����� � khF� F ik � k�k� � 
��

Lemma 	���� Let f � 
ki� � l�
K���� and ki � K for all i �N� Then F 
f� � K�
Proof� Due to continuity of F and the closedness of the algebra K it is possible to assume that all
ki are �nite�dimensional operators� Denote by Vi � H the image of the operator k�i � dimVi 
 �� Let
H � H��H� be an orthogonal decomposition ofH into a sum of two closed in�nite�dimensional subspaces�
Assume at �rst� that each of the subspaces Vi lays in one of subspaces H� or H�� Let F 
f� � K � ��
K � K� � � C� Choose a compact operator k with such image L � H� that dimL � �� Replace by
zeroes those terms in the sequence 
k�� k�� � � �� for which Vi � H� and denote the obtained sequence

��



by 
k��� k��� � � ��� Then 
k�k� k�k� � � �� � 
k��k� k��k� � � �� because the condition kik � 	 is equivalent to the
condition Imk�i � Imk� Thus

F 
k��� k
�
� � � ��k � F 
k��k� k

�
�k� � � �� � F 
k�k� k�k� � � �� � F 
k�� k�� � � ��k � 
K � ��k�

i�e�
F 
k��� k

�
�� � � ��jL � 
K � ��jL�

As dimL � �� so F 
k��� k��� � � �� � K� � � with some K� � K� Interchanging subspaces H� and H�� it is
possible to construct a sequence 
k��� � k��� � � � �� such that F 
k��� � k��� � � � �� � K�� � � with some K�� � K� Thus


K�� k�� � � �� � 
k
�
�� k

�
�� � � �� � 
k

��
� � k

��
� � � � ���

hence�
F 
k�� k�� � � �� � K� �K�� � ���

therefore � � 	� In case of arbitrary subspaces Vi is possible to �nd such �nite�dimensional operators li�
mi� ni that

Ki � li � mi � ni� 
l�� l�� � � �� � l�
K��� 
M��m�� � � ��� 
n�� n�� � � �� � l�
K����

and the image of each of operators m�
i and n

�
i lays in one of the subspaces H�� H�� �

Put Fi � Ki � �i� hF� F i � K � �� where Ki�K � K� �i� � � C� Then
F �i Fi � K�

i Ki � �iK
�
i � �iKi � j�ij��

Lemma 	���	
P�

i�� j�ij� � ��

Proof� At �rst we show that the series
P�

i�� j�ij� converges� Suppose that it is not so� PutM � khF� F ik
and �nd a number N such that

PN
i�� j�ij� 
 M � �� Choose � 
 	 to satisfy the estimate

NX
i��


� � �j�ij�� � �

�
�

Choose� further� a vector � � H with k�k � � to satisfy the inequalities
kK�

iKi�k � �� kKi�k � �� kK�
i �k � �� i � �� � � � � N�

Then the inequalities
�X
i��


F �i Fi�� �� �
NX
i��


F �i Fi�� �� �M �
�

�

contradict 
��� So�
P�

i�� j�ij� 
�� But it means that 
��� ��� � � �� � l�
K��� Then

K � � � hF� F i � F 
F�� F�� � � �� � F 
K��K�� � � �� � F 
��� ��� � � ��

� F 
K��K�� � � �� �
�X
i��

F �i �i � F 
K��K�� � � �� �
�X
i��


K�
i � �i��i

�

�
F 
K��K�� � � �� �

�X
i��

K�
i �i

	
�

�X
i��

j�ij��

But� as F 
K��K�� � � �� �
P�

i��K
�
i �i � K� we conclude that

P�
i�� j�ij� � �� �

Lemma 	���� 
�
��� Let X be a compact Hausdor
 space and let fn� f � gn� g be real�valued functions
on X� n � N� Assume that the functions fn� f are continuous� that the functions fn � gn and gn are
nonnegative� that the function g is bounded� that the series

P�
n�� gn uniformly converges to the function g�

and that the series
P�

n��
fn�gn� converges pointwise to the function f�g� Then the series
P�

n��
fn�gn�
uniformly converges to the function f � g� �

��



Let X � B�
H� be the unit ball of H with the weak topology� � � X� Put

fn
�� � 

K
�
nKn � �nK

�
n � �nKn��� ��� gn
�� � j�nj� � k�k� � f
�� � 
K�� ��� g
�� � � � k�k� �

The conditions of the lemma ����� are satis�ed� so the series
P�

i��
F
�
i Fi�� �� uniformly converges on X

to the function 
hF� F i�� ��� therefore the series P�
i��F

�
i Fi converges to hF� F i in the algebra K� and�

therefore� F � l�
K��� �

��� Re�exivity of modules over C�X�

In this section we describe results of the papers ���� 
���

De�nition 	���� 
�
��� A compact Hausdor� space X is called an L�space if for an arbitrary sequence
f�� f�� � � � of continuous functions on X converging pointwise to some bounded function f the set of
continuity points of the function f is dense in X�

Examples of L�spaces are any compact subsets of �nite�dimensional Euclidean space ���� In�nite
Stonean spaces are not L�spaces�

De�nition of L�spaces allows us to give a description of bidual Hilbert modules over algebras of
functions on such spaces�

Theorem 	���� 
���� 
��� Let A � C
X�� where X is an L�space� Then any countably generated Hilbert
A�module is re�exive�

Proof� According to the stabilization theorem ����� any countably generated Hilbert module is a direct
summand in the standard module HA� therefore it is su$cient to prove re�exivity of the module HA�
The proposition ����� gives a description of the dual module�

H�
A � ff � 
fi
t�� � fi
t� � C
X�� sup

N

�����
NX
i��

jfi
t�j�
����� 
�g�

Since the sequence of partial sums
PN

i�� jfi
t�j� is monotone and bounded at each point t � X� the
corresponding series converges pointwise to a bounded function� By the supposition the set of points of
continuity of the limit function

P�
i�� jfi
t�j� is dense in X� Let us �x a point of continuity t� � X� Let

�
t� be a continuous function on X� equal to � at the point t�� For F � H��
A we have

F 
f�� � F

�
NX
i��

eifi � �
	
� F

��
f �

NX
i��

eifi

	
�

	
� 
�	�

where feig is the standard basis in HA � H�
A� The element

PN
i�� eifi � belongs to the module HA�

therefore

F

�
NX
i��

eifi � �
	
�

NX
i��

F �i fi � ��

where by Fi � Fi
t� we denote F 
bei��� Let �
f� denote the least upper bound of oscillation of the functionPN
i�� jfi
t�j�� Then� obviously�

�
f� � lim
N��

sup
t�X

�X
i�N��

jfi
t�j� � lim
N��

�����f �
NX
i��

eifi

�����
�

�

Let us choose an arbitrary � 
 	 and a function �
t� such that on the support Supp�
t� the oscillation
�
f� is less than ��� Then �nd such N that for all N � 
 N the inequality������

��f � N �X
i��

eifi

�A�

������
�


 ��� 
���

�




holds� It follows from inequalities 
�	��
��� that at the point t� 
where �
t�� � �� one has

jF 
f�
t�� �
N �X
i��

F �i 
t��fi
t��j � kFk � ���

for all N � 
 N � Thus� the series
P�

i�� F
�
i 
t�fi
t� converges to a continuous function F 
f�
t� at all points

t� of continuity of the sum of the series
P�

i�� jfi
t�j�� Since H��
A � H�

A� the series

�X
i��

F �i 
t�Fi
t� 
���

is also convergent at each point and coincides with the continuous function hF� F i
t� � F 
 eF �
t� at each
point of continuity� Denote by E � X the set of continuity points of the series 
���� Let now t� be
some point of discontinuity of the series 
���� Without loss of generality 
multiplying by some continuous
function� if necessary� it is possible to assume that there is the sequence of points tn � E� converging to
the point t� such that hF� F i
tn� � � and

P�
i�� jFi
t��j� 
 �� Choose functions hi
t� � C
X� to satisfy

conditions


i� hi
t�� � Fi
t��� jhi
t�j � jFi
t�j�

ii� h � 
hi� � HA� i�e� the series

P�
i�� jhi
t�j� is uniformly convergent�

De�ne a function �
t� on X by conditions�


i� 	 � �
t� � �� �
t�n� � 	� �
t�n��� � ��


ii� Outside the point t� the function �
t� is continuous�

Consider the element
Fi
t� � hi
t� � �
t�
Fi
t� � hi
t���

It can be easily checked that the functions fi
t� are continuous on the whole X� Moreover� as jfi
t�j �
jFi
t�j� so we have f � 
fi� � H�

A� Then

F 
f�
t� � hF� fi
t� �
�X
i��

F �i 
t�hi
t� � �
t�
�X
i��

F �i 
t�
Fi
t�� hi
t���

The series �X
i��

F �i 
t�hi
t� 
���

is uniformly convergent because h � HA� On the set E � X the series

�X
i��

F �i 
t�
Fi
t� � hi
t��

converges uniformly to the continuous function hF� F � hi
t� which is continuous on the whole X� Then
for t � E one has

hF� fi
t� � hF� hi
t� � �
t�
hF� F i
t�� hF� hi
t���
and for each tn

hF� fi
tn� � hF� hi
tn� � �
tn�
�� hF� hi
tn��� 
���

The functions hF� fi
t� and hF� hi
t� are continuous� and as the series 
��� is uniformly convergent� so

hF� hi
t�� �
�X
i��

jFi
t��j� 
 ��

But it contradicts continuity of the function hF� fi
t�� as due to our choice of the function �
t� the limits
of the right and the left part of the equality 
��� are di�erent for even and for odd n � �

��



��� Hilbert modules related to conditional expectations of �nite index

In this section we describe results of the paper ����� Let E � A 
 B � A be an exact conditional
expectation on a C��algebra A� i�e� a projection of norm one onto a C��algebra B such that the condition
E
x�x� � 	� x � A� implies x � 	�

A conditional expectation E � A 
 B � A is called a conditional expectation of algebraically �nite
index if there exists a set of elements fu�� ���� ung � A such that for any x � A x �

Pn
i�� uiE
u

�
ix�� Then

the element Ind
E� �
Pn

i�� uiu
�
i of the center of the C

��algebra A is called the ��������� of E� Ind
E�
does not depend on a choice of the elements fu�� ���� ung � A� is positive� and Ind
E� � �A �
�� ��� It is
shown in ��� that the algebraic �niteness of the index is equivalent to the property of A to be a projective
�nitely generated C��Hilbert module over the C��algebra B�

It is also interesting to consider another class of conditional expectations E � A 
 B � A for which
there exists a number K � � such that the map 
K � E � idA� is a positive element of the C��algebra
A� Such conditional expectations are called conditional expectations of �nite index and they have the
following property�

Proposition 	�	�� Let A be a C��algebra and let E � A
 B � A be a conditional expectation for which
the set of �xed points coincides with B� Then there exists a �nite number K � � such that the map

K � E � IdA� is positive i
 E is exact and the �right� pre�Hilbert B�module fA�E
h�� �iA�g is complete

with respect to the norm kE
h�� �iA�k���B 
where ha� biA � a�b for a� b � A��

Proof� If the algebra A is complete with respect to the norm kE
h�� �iA�k���B then there exists such
number K that the inequality KkE
x�x�k � kx�xk holds for any x � A� For a � A� � 
 	 put x �
a
� �E
a�a������� Remark that


� �E
a�a������ �E
a�a� � 
� �E
a�a������ � �A �
whence the inequalityK ��A � 
��E
a�a������ �a�a � 
��E
a�a������ follows� Multiplying both parts of
it by 
��E
a�a������ we conclude that K � 
��E
a�a�� � a�a for all a � A� � 
 	� The inverse statement
obviously follows from the inequality kE
x�k � K����kxk valid for any x � A� �

Notice that unlike algebraic �niteness of the index� in the case of conditional expectation of a �nite
index the Hilbert module fA�E
h�� �iA�g can be in�nitely generated�

De�ne
K
E� � inffK � 
K �E � idA�positively inAg �

Let us call K
E� the characteristic number of the conditional expectation E�

Let X be a compact Hausdor� space with an action of a group G� Denote the C��algebra of G�invariant
continuous functions on X by CG
X�� and stabilizer of a point x � X denote by Gx � fg � G � gx � xg�
De�nition 	�	�� A continuous action of group G on X is called uniformly continuous if for each point
x � X and for each its neighbourhood Ux there is the neighbourhood Vx of the point x such that
g
Vx� � Ux for each g � Gx�

Remark that the continuous action of compact group satis�es this de�nition�

De�nition 	�	�� Let a group G acts uniformly continuously on a compact Hausdor
 space X in such
a manner that the length of each orbit .Gx does not exceed some number k � N� De�ne a conditional
expectation EG � C
X�
 EG
C
X�� � C
X� by the formula

EG
f�
x� �
�

.
G�Gx�
�
X

ga�G�Gx

f
gax� � 
x � X� �

Lemma 	�	�	 
����� The conditional expectation EG is well�de�ned�

Theorem 	�	�� 
����� Let a group G uniformly continuously acts on a locally compact Hausdor
 space X
so that k �� maxf.
Gx� � x � Xg 
 ��� Then the characteristic number of the conditional expectation
EG satis�es the equality

K
EG� � k �� max
x�X

.
Gx��

��



Proof� Let x � X be an arbitrary point and let kx � .Gx� Then

KEG
f�x � k
�

kx
�
X

ga�G�Gx

f
gax� � f
x��

where f is an arbitrary non�negative function in C
X�� Let us assume that K
EG� 
 k and choose such
point x that kx 
 K
EG�� Then it is possible to choose a small enough neighbourhood Ux of the point
x so that giUx 	 gjUx � � 
i �� j� for the set fg� � �� g�� � � � � gmg � G�Gx� Let f be a continuous
non�negative function with the support lying inside Ux� Then

K
EG�EG
f�x � K
EG�
�

kx
�
X

ga�G�Gx

F 
gax� 
 f
x��

Contradiction with the de�nition of K
EG� completes the proof� �

Theorem 	�	�� Let X be a compact Hausdor
 space and let G be a group uniformly continuously acting
on X� If all orbits of the action of G have the same �nite number of points then the conditional expectation

E
f�
x� �
�

.
Gx�

X
gi��G�Gx�i

f
gix� �

is well�de�ned on C
X�� and the Hilbert CG
X��module fC
X�� E
h�� �i�g is �nitely generated and pro�
jective�

Proof� The idea of the proof is contained in �
��� but beforehand we require two technical lemmas�

Lemma 	�	�� Let X be a compact Hausdor
 space with a uniformly continuous action of a group G and
let all orbits contain equal �nite number of points� Then for any point x � X and for any element g � Gx

one can �nd an open neighbourhood Ux of a point x on which g acts identically�

Proof� Let us denote the length of orbits .
Gx� by n� Let x�� � � � � xn � X be the orbit of the point x
and let hi � G be such elements that hix � xi� Choose g� � Gx and assume that each neighbourhood Ux
of the point x contains some point y � Ux such that g�y �� y� Fix neighbourhoods Uxi of the points xi
satisfying condition Uxi	Uxj � � for i �� j� Then we can �nd a neighbourhood Vx � Ux of the point x such
that hi
Vx� � Uxi � Since the group G acts uniformly continuously� it is possible to �nd a neighbourhood
Wx � Vx of the point x such that g
Wx� � Vx for each g � Gx� If y �Wx and g�y �� y then the orbit Gy
of this point includes not less than n� � di�erent points fhiy � Uxi � i � �� � � � � ng � fy� g�y � Vxg� The
obtained contradiction proves the lemma� �

Lemma 	�	�� Under the suppositions of the lemma ����� for any point x � X one can �nd a neighbour�
hood Vx of this point such that the action of the subgroup Gx on Vx is the identity mapping�

Proof� We should show that a neighbourhood Ux of the lemma ����� can be choosen for all g � Gx

simultaneously� For each g � Gx put

Ux
g� � fy � X � gy � yg �
Suppose the contrary� i�e� that the set 	g�Gx

Ux
g� does not contain any neighbourhood of the point x� It
means that any neighbourhood Ux of the point x contains some point z such that for some gz � Gx we have
gzz �� z� Consider a neighbourhood Vx of the point x and neighbourhoods fUhixg for �xed representatives
fhi �� eg � G of cosets in G�Gx such that their intersections are empty and hi
Vx� � Uhix� As in the
proof of the lemma ����� we �nd a neighbourhood Wx � Vx of the point x such that g
Wx� � Vx for each
g � Gx� Put Ux � �g�Gx

G
Wx� � Vx� It is a Gx�invariant open neighbourhood of the point x � X� The
supposition gzz �� z for some z � Ux� gz � Gx means� that the orbit of the point z consists of not less
than n� � points� �

��



Let Ux � Vx be a neighbourhood of the point x such that the action of Gx on Vx is an identity
mapping� Then one can �nd a function fx � C
X� such that supp fx � Vx and fxjUx � �� For each g � G
one has either 
gVx� 	 Vx � � or gVx � Vx� therefore

�g
fx� � fx �



�g
fx�
� if gx � x�

	 if gx �� x�

where � denotes the action of G on functions� �g
f�
x� � f
g��x�� Let fUx� � � � � � Uxkg be a �nite covering
of the space X by sets of the above form� Put

v �
kX
i��

fxi � � � Ui � v����
fxi �
��� � C
X� �

Notice that if we take one element gi in each coset G�Gx then by the lemma ����� the map

EG
f�
x� �
�

.
Gx�

nX
i��

f
gix� �

is well�de�ned for all x � X� f � C
X� and it is a conditional expectation on C
X�� Moreover� for each
function f � C
X� one has

kX
i��

ui �EG
u
�
i f� �

kX
i��

�� �
n

nX
j��

Ui
x�u
�
i 
gjx�f
gjx�

�A � f � EG
u
�
iuj� � �i�j �

hence the set fu�� ���� ung is a basis of the Hilbert CG
X��module fC
X�� EG
h�� �i�g� Therefore� this
Hilbert module is �nitely generated and projective� �

The theorem ����
 generalizes results of �
�� and shows that if all orbits consist of equal �nite number
of points then the corresponding conditional expectation is of algebraically �nite index� From �nite
generatedness and projectivity it follows that the Hilbert module A � fC
X�� E
h�� �i�g is autodual� In
the case of a �nite index 
when K
EG� 
 � and the pre�Hilbert module A is complete� we can not
expect that this module should be self�dual� However sometimes this module is re�exive� i�e� A�� � A�
where A� is the dual Banach CG
X��module of bounded CG
X��homomorphisms from A into CG
X��

Theorem 	�	�� 
����� Let the group G uniformly continuously acts on a compact Hausdor
 space X�
Suppose that all orbits consist of not more than n points� and that the number of points� for which the
length of their orbit is less than n� is �nite� Then the HilbertCG
X��module fC
X�� EG
h�� �i�g is re�exive�
Proof� Describe at �rst the dual Banach CG
X��module A�� Let x�� � � � � xm be the points with orbits
shorter than n� It is possible to choose open neighbourhoods U�� � � � � Um of these points in such a way that
each neighbourhood Ui would be invariant with respect to the action of the subgroup Gxi and if for some
h � G one has hxi � xj then hUi � Uj � Denote by Y the G�invariant compact set X n 
U� � � � �� Um��
Let F � A� be a CG
X��valued functional on the module A� Consider its restriction on the Hilbert
CG
Y ��module fC
Y �� EG
h�� �i�g� For a function g � C
Y � we take its extension eg � C
X� and de�ne
F jY by the equality F jY 
g� � F 
eg�jY � This de�nition does not depend on the choice of an extension eg� If
Y � � Y is also a compactG�invariant subspace not containing the points x�� � � � � xm then 
F jY � �jY � F jY �
Since the orbit of each point of the set Y has constant length� by the theorem ����
 the CG
Y ��module
fC
Y �� EG
h�� �i�g is �nitely generated and projective� therefore auto�dual� Denote by C
Xnfx�� � � � � xmg�
the set of continuous functions on the noncompact space X n fx�� � � � � xmg� The restriction on this space
de�nes a map

A� �
 C
X n fx�� � � � � xmg�� 
���

It is easy to verify that the map 
��� is an monomorphism�
Let us study local properties of functionals from A� close to the points x�� � � � � xm� Let x� be one of

these points� It has such neighbourhood Ux� that if gx� � x� then gUx� � Ux� � The group Gx� contains
a normal subgroup G� of the elements� which do not move points from the neighbourhood Ux� � Choose


	



a representative gi in each coset G�Gx�� Then outside the point x� the action of the functional F � A�
can be written as

F 
f�
x� �
�

n

nX
i��

F �
gix� � f
gix�� 
�
�

and this action can be continuously extended to the point x�� Let x� � x�� x�� � � � � xk�� be the orbit of
the point x�� Then it is possible to write the sum 
�
� in the form

F 
f�
x� �
�

n

k��X
j��

�� X
i
gix��xj

F �
gix� � f
gix�
�A �

Passing to the limit 
which exists by supposition�� we obtain

F 
f�
x�� � lim
x�x�

�

n

k��X
j��

�� X
i
gix��xj

F �
gix� � f
xj�
�A �

hence there exists 
for f � � � C
X�� the limit

�

n
lim
x�x�

X
i
gix��xj

F 
gix�

for any x � X nfx�� ���� xmg� Remind that the function F 
x� is de�ned only outside of the point x�� If we
would like the action F on the Hilbert CG
Y ��module fC
Y �� EG
h�� �i�g to be of the form 
�
� on the
whole X� it is necessary to de�ne the function F 
x� at the point x� by the equality

F 
x�� �
�

n
lim
x�x�

X
i
gix��xj

F 
gix�� 
���

To complete the proof we need the following lemma�

Lemma 	�	��� The module A� is isomorphic to the module of all bounded functions F 
x� on X which
are continuous on X n fx�� � � � � xmg� and satisfy the condition 
����

Proof�We need to show that the image of the monomorphism
��� consists of bounded functions� Suppose
the inverse� Then there exists such point /x that jF 
/x�j 
 n � kFk� where kFk is the norm of F in the dual
Banach CG
X��module A�� Moreover� it is possible to choose a neighbourhood U�x of the point /x so that
U�x 	 giU�x � � for those elements of the group G� for which gi/x �� /x� Consider such function f � C
X��
that f
/x� � � and supp f � U�x� Then it follows from the equality 
�
� that

F 
f�
/x� �
�

n
F �
/x� � f
/x��

and the inequality

jF 
f�
/x�j � �

n
jF �
/x�j � jf
/x�j � �

n
jF 
/x�j 
 kFk�

gives a contradiction� �

Now� having the above description of the dual module A�� it is possible to describe the bidual module
A��� Since there exists the canonical inclusion A�� � A�� and the inner product on A can be in a natural
way extended to an inner product on A�� 
see Theorem ������� making it a Hilbert module� it is su$cient
to verify� on which functions from A� it is possible to extend the CG
X��valued inner product� Consider
a function F from A� 	A��� Adding to it 
if necessary� a continuous function from A we can suppose that
F 
x�� � 	� Then the CG
X��valued inner product of F by itself is an element of CG
X� having the form

hF� F i
x� � E
jF 
x�j�� � �

n

X
i
gix��xj

jF 
gix�j� 
���


�



for all x � X� But� as hF� F i
x�� � 	� it follows from the supposition F � A�� that

lim
x�x�

F 
gix� � 	

for each summand of the equality 
���� Therefore� we obtain from 
��� that the function F is continuous
at the point x�� hence the module A is re�exive� �
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