Introductory remarks	Gauge-equivariant K-theory				Concluding remarks
	00 0000000 000	00 00	000	00 00000 00	

An index theorem in the gauge-equivariant K-theory

E. Troitsky (joint with V. Nistor)¹

Department of Mechanics and Mathematics Moscow State University http://mech.math.msu.su/~troitsky

Workshop "KK-theory and its applications", Münster 2009

¹The research was partially supported by the RFBR (grant 07-01-00046) = 999

E.Troitsky

Moscow State University

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	00 00000000 000	00	000	00 00000 00	

Outline I

- 1 Introductory remarks
- 2 Gauge-equivariant K-theory
 - Bundles of compact Lie groups
 - Finite holonomy condition
 - Algebraic interpretation
- 3 Topological index
 - Thom isomorphism
 - Fiberwise Mostow-Palais theorem
- 4 Analytical index
 - Definition
 - Saturated case

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	00 00000000 000	00	000	00 00000 00	

Outline II

- A smoothness condition
- Axiomatic approach
- Index theorem

◆□▶◆圖▶◆圖▶◆圖▶ ▲圖圖 ���?

E.Troitsky

Moscow State University

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	00 00000000 000	00	000	00 00000 00	

Introductory remarks

The equivariant theory of families in the classical meaning has the following two extreme cases: if the base is one point, we have the equivariant index theorem for a single operator. If the action is trivial, we have the ordinary family index theorem. The same extreme cases we have for a family index theory, which is invariant under an action of a family of compact Lie groups. This setting is important due to (possible) applications to physics.

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	00 00000000 000	00	000	00 00000 00	

About this talk

- I will try to concentrate mainly on *K*-theoretical, not ΨDO-theoretical aspects of our theory, following the main topic of the present Conference.
- I have returned back to this subject a couple of months ago after a 3-years-break, so I can not give a reasonable presentation of numerous and very interesting recent papers, sorry.
- I will try to emphasize the properties and facts, which distinct our theory from the classical one.

= 200

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	00 00000000 000	00	000	00 00000 00	

About this talk

- I will try to concentrate mainly on *K*-theoretical, not ΨDO-theoretical aspects of our theory, following the main topic of the present Conference.
- I have returned back to this subject a couple of months ago after a 3-years-break, so I can not give a reasonable presentation of numerous and very interesting recent papers, sorry.
- I will try to emphasize the properties and facts, which distinct our theory from the classical one.

= ~ Q Q

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	00 00000000 000	00	000	00 00000 00	

About this talk

- I will try to concentrate mainly on *K*-theoretical, not ΨDO-theoretical aspects of our theory, following the main topic of the present Conference.
- I have returned back to this subject a couple of months ago after a 3-years-break, so I can not give a reasonable presentation of numerous and very interesting recent papers, sorry.
- I will try to emphasize the properties and facts, which distinct our theory from the classical one.

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory ●0 ○○○○○○○	Topological index	Analytical index	Index theorem	Concluding remarks
Bundles of compact Li	e groups				

Outline

- Introductory remarks
- 2 Gauge-equivariant K-theory
 - Bundles of compact Lie groups
 - Finite holonomy condition
 - Algebraic interpretation
- 3 Topological index
 - Thom isomorphism
 - Fiberwise Mostow-Palais theorem
- 4 Analytical index
 - Definition
 - Saturated case
- 5 Index theorem
 - A smoothness condition
 - Axiomatic approach

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	0 0000000 000	00 00	000	00 00000 00	

Bundles of compact Lie groups

Bundles of compact Lie groups: Definition.

Definition

Bundle of compact Lie groups G over a compact base B with typical fiber G (a compact Lie group) is a locally trivial bundle with the structure group Aut(G).

Definition

K-theory $K_{\mathcal{G}}^{i}(B)$ is defined as *K*-theory of the Banach category of \mathcal{G} -invariant complex vector bundles over *B*. Similarly we define $K_{\mathcal{G}}^{i}(Y)$ for a \mathcal{G} -equivariant fiber bundle $Y \rightarrow B$.

E.Troitsky

Moscow State University

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	0 0000000 000	00 00	000	00 00000 00	

Bundles of compact Lie groups

Bundles of compact Lie groups: Definition.

Definition

Bundle of compact Lie groups G over a compact base B with typical fiber G (a compact Lie group) is a locally trivial bundle with the structure group Aut(G).

Definition

K-theory $K_{\mathcal{G}}^{i}(B)$ is defined as *K*-theory of the Banach category of \mathcal{G} -invariant complex vector bundles over *B*. Similarly we define $K_{\mathcal{G}}^{i}(Y)$ for a \mathcal{G} -equivariant fiber bundle $Y \to B$.

E.Troitsky

Moscow State University

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
Finite holonomy condi	tion				

Moscow State University

Outline

- Introductory remarks
- 2 Gauge-equivariant K-theory
 - Bundles of compact Lie groups
 - Finite holonomy condition
 - Algebraic interpretation
- 3 Topological index
 - Thom isomorphism
 - Fiberwise Mostow-Palais theorem
- 4 Analytical index
 - Definition
 - Saturated case
- 5 Index theorem
 - A smoothness condition
 - Axiomatic approach

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
Einite helenemu eendi					

Representation covering

Suppose, \mathcal{P} is the universal Aut(*G*)-bundle corresponding to \mathcal{G} . Let $\widehat{\mathcal{G}}$ be the (disjoint) union of the sets $\widehat{\mathcal{G}}_b$ of equivalence classes of irreducible representations of the groups \mathcal{G}_b . Using the natural action of Aut(*G*) on \widehat{G} , we can naturally identify $\widehat{\mathcal{G}}$ with $\mathcal{P} \times_{Aut(G)} \widehat{G}$ as fiber bundles over *B*. We call it representation covering. Let Aut₆(*G*) be the connected component of the identity in

Aut(*G*). Suppose, $H_R := \operatorname{Aut}(G) / \operatorname{Aut}_0(G)$ and $\mathcal{P}_0 := \mathcal{P} / \operatorname{Aut}_0(G)$. Then $\widehat{\mathcal{G}} \simeq \mathcal{P}_0 \times_{H_R} \widehat{G}$.

Moscow State University

= ~~~

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
Finite helenemy condit	tion				

Representation covering

Suppose, \mathcal{P} is the universal Aut(*G*)-bundle corresponding to \mathcal{G} . Let $\widehat{\mathcal{G}}$ be the (disjoint) union of the sets $\widehat{\mathcal{G}}_b$ of equivalence classes of irreducible representations of the groups \mathcal{G}_b . Using the natural action of Aut(*G*) on \widehat{G} , we can naturally identify $\widehat{\mathcal{G}}$ with $\mathcal{P} \times_{Aut(G)} \widehat{G}$ as fiber bundles over *B*. We call it representation covering. Let Aut₀(*G*) be the connected component of the identity in Aut(*G*). Suppose, $H_R := Aut(G) / Aut_0(G)$ and $\mathcal{P}_0 := \mathcal{P} / Aut_0(G)$. Then $\widehat{\mathcal{G}} \simeq \mathcal{P}_0 \times_{H_R} \widehat{G}$.

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks	

Finite holonomy condition I

Assume now that *B* is a path-connected, locally simply-connected space and fix a point $b_0 \in B$. We shall denote, as usual, by $\pi_1(B, b_0)$ the fundamental group of *B*. Then the bundle \mathcal{P}_0 is classified by a morphism

$$\rho: \pi_1(B, b_0) \to H_R := \operatorname{Aut}(G) / \operatorname{Aut}_0(G), \tag{1}$$

which will be called the holonomy of the representation covering of \mathcal{G} .

Definition

We say that \mathcal{G} has (representation theoretic) finite holonomy if every $\sigma \in \widehat{\mathcal{G}}$ is contained in a compact-open subset of $\widehat{\mathcal{G}}$.

E.Troitsky

Moscow State University

= nan

ヘロン ヘロン ヘヨン ヘヨ

Int	troductory remark	Gauge-equivariant K-theory oo oo●ooooo ooo	Topological index	Analytical index	Index theorem	Concluding remarks
		000			00	

Finite holonomy condition I

Assume now that *B* is a path-connected, locally simply-connected space and fix a point $b_0 \in B$. We shall denote, as usual, by $\pi_1(B, b_0)$ the fundamental group of *B*. Then the bundle \mathcal{P}_0 is classified by a morphism

$$\rho: \pi_1(B, b_0) \to H_R := \operatorname{Aut}(G) / \operatorname{Aut}_0(G), \tag{1}$$

which will be called the holonomy of the representation covering of \mathcal{G} .

Definition

We say that \mathcal{G} has (representation theoretic) finite holonomy if every $\sigma \in \widehat{\mathcal{G}}$ is contained in a compact-open subset of $\widehat{\mathcal{G}}$.

E.Troitsky

Moscow State University

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	00 0000000 000	00 00	000	00 00000 00	

Finite holonomy condition II

Lemma

 \mathcal{G} has finite holonomy if and only if $\pi_1(B, b_0)\sigma \subset \widehat{G}$ is a finite set for any irreducible representation σ of G.

There is a number of purposes to restrict ourselves to the finite holonomy case. We will mention two of them.

E.Troitsky

Moscow State University

(4) (2) (4) (2)

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	00 0000000 000	00 00	000	00 00000 00	

Finite holonomy condition II

Lemma

 \mathcal{G} has finite holonomy if and only if $\pi_1(B, b_0)\sigma \subset \widehat{G}$ is a finite set for any irreducible representation σ of G.

There is a number of purposes to restrict ourselves to the finite holonomy case. We will mention two of them.

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	00 00000000 000	00 00	000	00 00000 00	

Finite holonomy condition III

1) The constructed *K*-theory should enjoy some natural properties, such as exact sequences etc. For this purpose bundles should be direct summands of trivial ones. Let us remark that in our theory the trivial bundles are bundles of the form $Y \times_B V$, where $V \to B$ is a *G*-equivariant vector bundle. Also compactifications Y^+ (for the theory with compact supports) are fiber-wise one-point compactifications (well defined since *G* is compact).

The finite holonomy condition implies the mentioned property.

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	00 00000000 000	00 00	000	00 00000 00	

Finite holonomy condition IV

2) The K-groups can be "small" if the holonomy is "large".

Example

The matrix $A = \begin{bmatrix} 3 & 2 \\ 4 & 3 \end{bmatrix}$ induces an automorphism α of the torus $T = S^1 \times S^1$ by the formula $\alpha(z, w) = (z^3 w^2, z^4 w^3)$. Consider a bundle of tori \mathcal{G}_A over S^1 with fiber T and holonomy A. This bundle can be realized as the quotient of $\mathbb{R} \times T$ by the equivalence relation $(t + n, z, w) \equiv (t, \alpha^n(z, w)), n \in \mathbb{Z}$. The morphism $\mathbb{Z} \simeq \pi_1(S^1) \rightarrow \operatorname{Aut}(T)$ sends a generator of \mathbb{Z} to α . The range of this morphism is not finite. The only irreducible representation σ of T with the property that $\pi_1(S^1)\sigma$ is finite is the trivial representation. We have $K^0_{\mathcal{G}}(S^1) = K^0(S^1)$.

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	00 000000●0 000	00 00	000	00 00000 00	

Finite holonomy condition V

In this example let $\mathcal{G} \subset \mathcal{G}_A$ be subset of all elements of order two of the fibers of \mathcal{G}_A . Then $\mathcal{G} \to S^1$ is a trivial bundle of finite groups: $\mathcal{G} = S^1 \times A$, with $A \simeq (\mathbb{Z}/2\mathbb{Z})^2$. Let

 $Y' := \mathcal{G}_A \times_{\mathcal{G}} S^1 = \mathcal{G}_A / \mathcal{G}.$

We have the induction isomorphism given by restriction to $\mathcal{S}^1 \subset \mathcal{Y}'$:

 $\mathcal{K}^0_{\mathcal{G}_A}(Y')\simeq \mathcal{K}^0_A(S^1)\simeq \mathcal{R}(A)\otimes \mathcal{K}^0(S^1)=\mathcal{R}(A).$

if $E \to Y'$ were a sub-bundle of a trivial E' bundle over Y', then $E|_{S^1}$ would also be a \mathcal{G} -equivariant sub-bundle of the trivial \mathcal{G} -equivariant bundle $E'|_{S^1}$. If E'' is a \mathcal{G}_A -equivariant bundle over S^1 , then the pull-back to Y' followed by the restriction to S^1 corresponds to restricting the action of \mathcal{G}_A to an action of $\mathcal{G}_A = 220$

Introductory	Gauge-equivariant K-theory				Concluding remarks
	00 0000000 000	00 00	000	00 00000 00	

Finite holonomy condition VI

Thus any bundle of the form $E'|_{S^1}$, with E' a trivial \mathcal{G}_A -bundle, will be trivial over S^1 and will have the trivial action of A, as mentioned. Any sub-bundle of E' will again have the trivial action of A. This shows that the \mathcal{G}_A -equivariant bundles over Y'that can be realized as sub-bundles of trivial bundles have a class in $\mathcal{K}^0_{\mathcal{G}_A}(Y') \simeq \mathcal{R}(A)$ corresponding to multiples of the trivial representation.

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory	Topological inde x	Analytical index	Index theorem	Concluding remarks
Algebraic interpretatio	n				
Outline					
	ductory remarks				
	ge-equivariant K				
Bundles of compact Lie groups					
Finite holonomy condition					
Al 🖉	gebraic interpret	ation			
3 Topo	ological index				
	nom isomorphism	l			
	berwise Mostow-		rem		
	lytical index				
	efinition				
	aturated case				

-

Moscow State University

- 5 Index theorem
 - A smoothness condition
 - Axiomatic approach

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
				00000	

Algebraic interpretation

Algebraic interpretation

Theorem

Assume that the bundle of compact Lie groups $\mathcal{G} \to B$ has finite holonomy and that B is compact. Then there is a natural equivalence of categories between the category of locally trivial \mathcal{G} -equivariant vector bundles over B and the category of finitely-generated, projective modules over the fiberwise completion $C^*(\mathcal{G})$ of the convolution algebra. In particular, $K^*_{\mathcal{G}}(B) \cong K_*(C^*(\mathcal{G})).$

= 990

イロト イヨト イヨト イヨト

Introductory remarks	Gauge-equivariant K-theory ○○ ○○○○○○○ ○○●	Topological index	Analytical index	Index theorem	Concluding remarks
	0				

Algebraic interpretation

Denote by $(\widehat{\mathcal{G}})_d$ the space of irreducible representations of dimension *d* of the groups \mathcal{G}_b . By the local triviality of $\mathcal{G} \to B$, $(\widehat{\mathcal{G}})_d$ is open and closed in $\widehat{\mathcal{G}}$ and is a covering space of *B*.

Theorem

There exists on each $(\widehat{\mathcal{G}})_d$ a locally trivial bundle of algebras \mathcal{A}_d with fiber $M_d(\mathbb{C})$ and structure group $PGL(d, \mathbb{C}) := GL(d, \mathbb{C})/Z(GL(d, \mathbb{C}))$ such that the space $\Gamma_0(\mathcal{A}_d)$ identifies with a direct summand of $C^*(\mathcal{G})$ and $C^*(\mathcal{G}) \cong \Gamma_0(\mathcal{A}_d)$. In particular, $K_i(C^*(\mathcal{G})) \cong \oplus K_i(\Gamma_0(\mathcal{A}_d))$ and the primitive ideal spectrum of $C^*(\mathcal{G})$ is homeomorphic to $\widehat{\mathcal{G}}$, which in turn is homeomorphic to the disjoint union of the sets $(\widehat{\mathcal{G}})_d$.

Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index ●○ ○○	Analytical index	Index theorem	Concluding remarks
Thom isomorphism					

Moscow State University

Outline

- I Introductory remarks
- 2 Gauge-equivariant K-theory
 - Bundles of compact Lie groups
 - Finite holonomy condition
 - Algebraic interpretation
- 3 Topological index

Thom isomorphism

- Fiberwise Mostow-Palais theorem
- 4 Analytical index
 - Definition
 - Saturated case
- 5 Index theorem
 - A smoothness condition
 - Axiomatic approach

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index ○● ○○	Analytical index	Index theorem	Concluding remarks
Thom isomorphism					

Thom isomorphism

The main ingredient for the construction of topological index is an appropriate Thom isomorphism theorem for the following morphism.

Definition

Let $\pi_F : F \to X$ be a (complex) \mathcal{G} -equivariant vector bundle. Assume the \mathcal{G} -bundle $X \to B$ is compact and let $\lambda_F \in K^0_{\mathcal{G}}(F)$ be the class defined by $\lambda_F := [\Lambda(\pi^*_F(F), s_F)] \in K^0_{\mathcal{G}}(F)$ as in the classical case, then the mapping

$$arphi^{\mathsf{F}}: \mathsf{K}^{\mathsf{0}}_{\mathcal{G}}(\mathsf{X})
ightarrow \mathsf{K}^{\mathsf{0}}_{\mathcal{G}}(\mathsf{F}), \qquad arphi^{\mathsf{F}}(\mathsf{a}) = \pi^{*}_{\mathsf{F}}(\mathsf{a}) \otimes \lambda_{\mathsf{F}}.$$

is called the Thom morphism. It can be extended to the non-compact case.

E.Troitsky

Moscow State University

Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index ○○ ●○	Analytical index	Index theorem	Concluding remarks
Fiberwise Mostow-Pala	ais theorem				

Moscow State University

Outline

- I Introductory remarks
- 2 Gauge-equivariant K-theory
 - Bundles of compact Lie groups
 - Finite holonomy condition
 - Algebraic interpretation
- 3 Topological index
 - Thom isomorphism
 - Fiberwise Mostow-Palais theorem
- 4 Analytical index
 - Definition
 - Saturated case
- 5 Index theorem
 - A smoothness condition
 - Axiomatic approach

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory	Topological index ○○ ○●	Analytical index	Index theorem	Concluding remarks

Fiberwise Mostow-Palais theorem

Fiberwise Mostow-Palais theorem

The another important ingredient is the following "fiberwise Mostow-Palais theorem".

Theorem

Let $\pi_X : X \to B$ be a compact \mathcal{G} -fiber bundle. Then there exists a real \mathcal{G} -equivariant vector bundle $\mathcal{V} \to B$ and a fiberwise smooth \mathcal{G} -embedding $X \to \mathcal{V}$. After averaging one can assume that the action of \mathcal{G} on \mathcal{V} is orthogonal.

With these two theorems we define the topological index by the classical scheme.

< ロ > < 同 > < 回 > < 回 >

Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index 00 00	Analytical index ●00 ○00	Index theorem	Concluding remarks
Definition					

Moscow State University

Outline

- 1 Introductory remarks
- 2 Gauge-equivariant K-theory
 - Bundles of compact Lie groups
 - Finite holonomy condition
 - Algebraic interpretation
- 3 Topological index
 - Thom isomorphism
 - Fiberwise Mostow-Palais theorem
- 4 Analytical index
 - Definition
 - Saturated case
- 5 Index theorem
 - A smoothness condition
 - Axiomatic approach

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	00 00000000 000	00 00	000 000	00 00000 00	

Definition

Definition of analytical index

Lemma

Let $\mathcal{G} \to B$ have finite holonomy. Suppose that $H^0 \to B$ and $H^1 \to B$ are two locally trivial bundles of \mathcal{G} -Hilbert spaces. Suppose also that $F = (F_b : H_b^0 \to H_b^1)_{b \in B}$ is a norm-continuous family of \mathcal{G} -invariant Fredholm operators for any trivialization of $H^i \to B$. Then there exists a finite-dimensional \mathcal{G} -invariant vector sub-bundle KER $\subset H^0$ such that:

- 1 $F_b : (KER_b)^{\perp} \rightarrow F_b((KER_b)^{\perp})$ is a \mathcal{G}_b -isomorphism for every $b \in B$;
- **2** COK := $\bigcup_{b \in B} (F_b(\text{KER}_b))^{\perp} \subset H^1$ is a finite-dimensional \mathcal{G} -invariant sub-bundle.

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory	Topological index 00 00	Analytical index ○○● ○○○	Index theorem	Concluding remarks

Definition

Definition of analytical index

With the help of this lemma we define analytical index of a family of \mathcal{G} -invariant Ψ DO as the difference of classes of KER and COK in $K_{\mathcal{G}}(B)$.

E.Troitsky

Moscow State University

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index ●○○ ●○○	Index theorem	Concluding remarks
Saturated case					

Moscow State University

Outline

- 1 Introductory remarks
- 2 Gauge-equivariant K-theory
 - Bundles of compact Lie groups
 - Finite holonomy condition
 - Algebraic interpretation
- 3 Topological index
 - Thom isomorphism
 - Fiberwise Mostow-Palais theorem
- 4 Analytical index
 - Definition
 - Saturated case
- 5 Index theorem
 - A smoothness condition
 - Axiomatic approach

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index	Analytical index ○○○ ○●○	Index theorem	Concluding remarks	
O a transfer of a second						

Saturated case

Saturated case

Definition

A locally trivial bundle of \mathcal{G} -Hilbert spaces $\pi : H \to B$ is called saturated if, for any $b \in B$ and any $\sigma \in \widehat{\mathcal{G}_b}$, the multiplicity of σ in the Hilbert space $H_b = \pi^{-1}(b)$ is either zero of infinite.

Lemma

Suppose that dim $Y > \dim \mathcal{G}$. Than any bundle of Sobolev spaces $H^s(Y; E)$ associated to $Y \to B$ is saturated.

E.Troitsky

Moscow State University

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index	Analytical index ○○○ ○●○	Index theorem	Concluding remarks	
Optimized and a						

Saturated case

Saturated case

Definition

A locally trivial bundle of \mathcal{G} -Hilbert spaces $\pi : H \to B$ is called saturated if, for any $b \in B$ and any $\sigma \in \widehat{\mathcal{G}_b}$, the multiplicity of σ in the Hilbert space $H_b = \pi^{-1}(b)$ is either zero of infinite.

Lemma

Suppose that dim $Y > \dim \mathcal{G}$. Than any bundle of Sobolev spaces $H^{s}(Y; E)$ associated to $Y \to B$ is saturated.

E.Troitsky

Moscow State University

= nan

Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index oo oo	Analytical index ○○○ ○○●	Index theorem	Concluding remarks
Saturated case					

Invertibility

The following theorem shows that the \mathcal{G} -equivariant index identifies the obstruction to invertibility, as the usual (or Fredholm) index.

Theorem

Suppose that dim $Y > \dim \mathcal{G}$ and let $D \in \psi_{inv}^m(Y; E, F)$ be a \mathcal{G} -equivariant family of elliptic operators acting along the fibers of $Y \to B$. Then we can find $R \in \psi_{inv}^{m-1}(Y; E, F)$ such that

$$D_b + R_b : H^s(Y_b; E_b) \rightarrow H^{s-m}(Y_b; F_b)$$

is invertible for all $b \in B$ if, and only if, $\operatorname{ind}_{\mathcal{G}}(D) = 0$. Moreover, if $\operatorname{ind}_{\mathcal{G}}(D) = 0$, then we can choose the above R in $\psi_{\operatorname{inv}}^{-\infty}(Y; E, F)$.

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index	Analytical index	Index theorem	Concluding remarks
A smoothness conditio	n				

Outline

- 1 Introductory remarks
- 2 Gauge-equivariant K-theory
 - Bundles of compact Lie groups
 - Finite holonomy condition
 - Algebraic interpretation
- 3 Topological index
 - Thom isomorphism
 - Fiberwise Mostow-Palais theorem
- 4 Analytical index
 - Definition
 - Saturated case
- 5 Index theorem
 - A smoothness condition
 - Axiomatic approach

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	00 00000000 000	00	000	0 0 00000 00	

A smoothness condition

A smoothness condition

The proof of the index theorem is based on the axiomatic approach and needs the following additional restriction: We suppose *B* to be a smooth (compact) manifold and $X \rightarrow B$ to be a smooth bundle, as well as all vector bundles involved. Also, we suppose, that after an appropriate trivialization over $U \subset B$ we have $X|_U = X_0 \times U$ and $\mathcal{G}|_U = G \times U \subset G \times \mathbb{R}^n$ (we consider *U* as an open neighborhood of zero in \mathbb{R}^n) the induced action of (a part of) $G \times \mathbb{R}^n$ on X_0 is smooth.

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks	
Axiomatic approach						

Outline

- 1 Introductory remarks
- 2 Gauge-equivariant K-theory
 - Bundles of compact Lie groups
 - Finite holonomy condition
 - Algebraic interpretation
- 3 Topological index
 - Thom isomorphism
 - Fiberwise Mostow-Palais theorem
- 4 Analytical index
 - Definition
 - Saturated case
- 5 Index theorem
 - A smoothness condition
 - Axiomatic approach

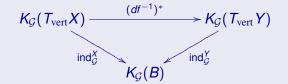
E.Troitsky

Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index	Analytical index	Index theorem ○○ ○●○○○ ○○	Concluding remarks	
Aviomatic approach						

Index function

Definition

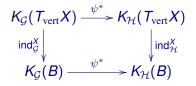
The index function is a family of $K_{\mathcal{G}}(B)$ -homomorphisms $\{\operatorname{ind}_{\mathcal{G}}^X\}, \operatorname{ind}_{\mathcal{G}}^X : K_{\mathcal{G}}(T_{\operatorname{vert}}X) \to K_{\mathcal{G}}(B)$, where \mathcal{G} runs over the set of bundles of compact Lie groups and X runs over compact longitudinally smooth \mathcal{G} -bundles, satisfying: 1). The following diagram is commutative for any \mathcal{G} -diffeomorphism $f : X \to Y$



Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index oo oo	Analytical index	Index theorem	Concluding remarks
Axiomatic approach					

Index function

2). If $\psi : \mathcal{H} \to \mathcal{G}$ is a morphism of bundles of groups over *B*, then the diagram



is commutative. Here *morphism of bundles of groups* is a morphism of longitudinally smooth bundles, which is fiberwise homomorphism of groups. The notion of ψ^* is evident.

< ロ > < 同 > < 回 > < 回 >

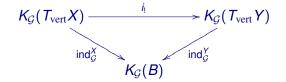
Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index	Analytical index	Index theorem	Concluding remarks
Axiomatic approach					
Axioms					

One can verify that the topological index is an index function satisfying the following two axioms. Moreover any index function satisfying these axioms coincides with the topological index.

Axiom A1. If X = B, then $\operatorname{ind}_{\mathcal{G}}^X : \mathcal{K}_{\mathcal{G}}(T_{\operatorname{vert}}X) \to \mathcal{K}_{\mathcal{G}}(B)$ coincides with $\operatorname{Id}_{\mathcal{K}_{\mathcal{G}}(B)}$.

Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index 00 00	Analytical index	Index theorem ○○ ○○○○● ○○	Concluding remarks
Axiomatic approach					
Axioms					

Axiom A2. Suppose $i : X \to Y$ is a fiberwise \mathcal{G} -embedding. Then the diagram



is commutative.

E.Troitsky

Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index	Analytical index	Index theorem ○○ ○○○○○ ●○	Concluding remarks	
Index theorem						

Outline

- 1 Introductory remarks
- 2 Gauge-equivariant K-theory
 - Bundles of compact Lie groups
 - Finite holonomy condition
 - Algebraic interpretation
- 3 Topological index
 - Thom isomorphism
 - Fiberwise Mostow-Palais theorem
- 4 Analytical index
 - Definition
 - Saturated case
- 5 Index theorem
 - A smoothness condition
 - Axiomatic approach

Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index 00 00	Analytical index	Index theorem ○○ ○○○○○ ○●	Concluding remarks
Index theorem					

Index theorem

The proof of the fact that the analytical index satisfies the axioms goes more or less along the classical line. The most complicated part is a "careful averaging" using the above supposition.

We obtain our main result:

Theorem

Index functions a-ind and t-ind coincide.

E.Troitsky

Moscow State University

・ロト ・同ト ・ヨト ・ヨ

Introductory remarks	Gauge-equivariant K-theory oo oooooooo ooo	Topological index 00 00	Analytical index	Index theorem ○○ ○●	Concluding remarks
Index theorem					

The proof of the fact that the analytical index satisfies the axioms goes more or less along the classical line. The most complicated part is a "careful averaging" using the above supposition.

We obtain our main result:

Theorem

Index functions a-ind and t-ind coincide.

E.Troitsky

Moscow State University

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks
	00 00000000 000	00	000	00 00000 00	

Concluding remarks

- We can write down a cohomological formula, because we have a good description of K⁰_G(B). Its form is (at the present stage of research) too evident to be discussed here.
- Among numerous very interesting papers on twisted *K*-theory and related matter the most close to us is the paper of Mathai-Melrose-Singer. They deal with projective families and also need to introduce an analogue of our finite holonomy condition: the twisting class should be in the torsion subgroup of $H^3(B; \mathbb{Z})$.
- Our algebras are slightly more general than Azumaya algebras arising in that situation.

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks

Concluding remarks

- We can write down a cohomological formula, because we have a good description of K⁰_G(B). Its form is (at the present stage of research) too evident to be discussed here.
- Among numerous very interesting papers on twisted *K*-theory and related matter the most close to us is the paper of Mathai-Melrose-Singer. They deal with projective families and also need to introduce an analogue of our finite holonomy condition: the twisting class should be in the torsion subgroup of $H^3(B; \mathbb{Z})$.
- Our algebras are slightly more general than Azumaya algebras arising in that situation.

= nan

(4) (3) (4) (4) (4)

Introductory remarks	Gauge-equivariant K-theory	Topological index	Analytical index	Index theorem	Concluding remarks

Concluding remarks

- We can write down a cohomological formula, because we have a good description of K⁰_G(B). Its form is (at the present stage of research) too evident to be discussed here.
- Among numerous very interesting papers on twisted *K*-theory and related matter the most close to us is the paper of Mathai-Melrose-Singer. They deal with projective families and also need to introduce an analogue of our finite holonomy condition: the twisting class should be in the torsion subgroup of $H^3(B; \mathbb{Z})$.
- Our algebras are slightly more general than Azumaya algebras arising in that situation.

References

 V. Nistor and E. Troitsky. An index for gauge-invariant operators and the Dixmier-Douady invariant. *Trans. Amer. Math. Soc.* 356 (2004) No.1, 185-218.
 V. Nistor and E. Troitsky. The Thom isomorphism in gauge-equivariant K-theory. In: C*-algebras and elliptic theory, Birkhaüser Trends in Math. series, 2006, pp.213–245.

 V. Nistor and E. Troitsky.
 An index theorem for gauge-invariant families. (submitted to Moscovici Proceedings)

References

The most close papers

V. Mathai, R. B. Melrose, and I. M. Singer. The index of projective families of elliptic operators, *Geometry & Topology* 9 (2005) 341–373.

E. Vasselli.

Property *T* for von Neumann algebras. *Int. J. Math.* 16 (2) (2005) 137–171.

E. Vasselli. Bundles of C*-categories, J. Funct. Anal. 247 (2007) 351–377.

Moscow State University

E.Troitsky