Problem 1. Give an example of an involutive Banach algebra that is not a C^{*}-algebra.
Problem 2. Show that a left unit element is also a right one, which has $1^{*}=1$; that the identity element is unique and that $\|1\|=1$. It is called the unit of algebra.

Problem 3. Verify that the algebra $C(X)$ formed by all continuous complex-valued functions on a compact space X and the algebra $C_{0}(X)$ of all continuous complex-valued functions on a locally compact space X tending to 0 at infinity (that is, $f: X \rightarrow \mathbb{C}$ such that for any $\varepsilon>0$ there exists a compact $K \subseteq X$ such that $\sup \{|f(x)| \mid x \in K\}<\varepsilon)$ are commutative C^{*}-algebras if the supremum-norm: $\|f\|=\sup _{x \in X}|f(x)|$, is taken as the norm and the pointwise multiplication is taken as the multiplication. Moreover, the algebra $C(X)$ is unital.

Problem 4. Verify that the algebra $\mathbb{B}(H)$ of all bounded operators acting on a Hilbert space H is a C^{*}-algebra with identity. Here as a norm we take the operator norm $\|a\|=$ $\sup _{h \in H,\|h\| \leq 1}\|a(h)\|$, and the multiplication is the composition of operators.
Problem 5. Show that "sum" norm turns A^{+}into an involutive Banach algebra, but not into a C^{*}-algebra.

Problem 6. Prove that A is an ideal in A^{+}.
Problem 7. Prove that if $a_{0} \in A$ is invertible and $\left\|a-a_{0}\right\|<\frac{1}{\left\|a_{0}^{-1}\right\|}$, then a is also invertible, and $a^{-1}=\sum_{n=0}^{\infty}\left[a_{0}^{-1}\left(a_{0}-a\right)\right]^{n} a_{0}^{-1}$.
Problem 8. Show that the quasi-spectrum always contains zero.
Problem 9. Let a and b be commuting elements of a Banach algebra. Then the product $a b$ is invertible if and only if each of the elements a and b are invertible.

Problem 10. Show that $r(a) \leq\|a\|$ for any $a \in A$.
Problem 11. Prove that M_{A} is a locally compact Hausdorff space, and $M_{A^{+}}$is its onepoint compactification.

Problem 12. Check that if $\varphi: A \rightarrow \mathbb{C}$ is a (non-zero) multiplicative functional on A, then the formula $\widetilde{\varphi}((a, \lambda))=\varphi(a)+\lambda$ defines a unique extension of φ to a multiplicative functional on A^{+}.

Problem 13. Any ideal I of a commutative unital Banach algebra is contained in some maximum ideal.

Problem 14. Prove the Gelfand theorem for a non-unital algebra.
Problem 15. If a is an invertible element, then the algebra $C^{*}(a)$ is unital. In this case $C^{*}(a)=C^{*}(1, a)$.

Problem 16. Prove that $f(\operatorname{Sp}(a))=\operatorname{Sp}(f(a))$ approximating f by polynomials, and correctly stating what it means that the image is continuous under a uniform approximation, and using the isometricity of the Gelfand transform.

Problem 17. Show that if $a \geqslant 0$ and $0 \geqslant a$, then $a=0$; and also that $-\|a\| 1 \leqslant a \leqslant\|a\| 1$ for every self-adjoint a.

Problem 18. If $0 \leqslant a \leqslant b$, then $\|a\| \leqslant\|b\|$.
Problem 19. Prove that an algebra with countable approximate unit does not have to be separable.

Problem 20. Prove that a positive element of an arbitrary C^{*}-subalgebra is a positive element of the entire algebra.

Problem 21. Let $\varphi: A \rightarrow B$ be a $*$-homomorphism of non-unital algebras. Prove that there is a unique unital $*$-homomorphism $\varphi^{+}: A^{+} \rightarrow B^{+}$, extending φ.

Problem 22. Let $\varphi: A \rightarrow B$ be a $*$-homomorphism of algebras, with A non-unital, and B unital. Prove that there is a unique unital $*$-homomorphism $\varphi^{(+)}: A^{+} \rightarrow B$, extending φ.

Problem 23. Verify that

- If S is self-adjoint, then so is S^{\prime}.
- The commutant of any set is a unital algebra.
- The commutant of any set is weakly closed.
- Thus, S^{\prime} is the von Neumann algebra for any self-adjoint set S.
- If $S_{1} \subset S_{2}$, then $S_{1}^{\prime} \supset S_{2}^{\prime}$.
- Always $S \subset S^{\prime \prime}$.
- Therefore $S^{\prime}=S^{\prime \prime \prime}, S^{\prime \prime}=S^{\prime \prime \prime \prime}$, etc.

Problem 24. Prove that if a self-adjoint element a in a unital C^{*}-algebra has $\operatorname{Sp}(a)=$ $\{0,1\}$, then a is a nonscalar idempotent.

Problem 25. Let $u_{\lambda}, \lambda \in \Lambda$, be some approximate unit in a unital algebra. Prove that $1=\lim _{\lambda \in \Lambda} u_{\lambda}$.

Problem 26. There is a natural bijection between self-adjoint linear functionals on A and (real) linear functionals on $A_{s a}$.

Problem 27. If A is unital, then a representation π is non-degenerate if and only if $\pi(1)=1$.

Problem 28. Prove that the matrix algebra M_{n} is simple for any n
Problem 29. Prove that the image of the matrix algebra M_{n} under a *-homomorphism is either a zero algebra or an algebra isomorphic to M_{n}.

Problem 30. Draw Bratteli diagram (for some defining sequence) of the following AFalgebra: the algebra of compact operators $\mathbb{K}(H)$.

Problem 31. Draw Bratteli diagram (for some defining sequence) of the following AFalgebra: the unitization $\mathbb{K}(H)^{+}$of the algebra of compact operators $\mathbb{K}(H)$.

Problem 32. Draw Bratteli diagram (for some defining sequence) of the following AFalgebra: the closure of the union of $A_{p}=M_{2^{p}}$, with embeddings $A_{p} \subset A_{p+1}$ of multiplicity 2 according to the formula $a \mapsto\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right)$ (CAR algebra).

Problem 33. Draw Bratteli diagram (for some defining sequence) of the following AFalgebra: $C(K)$, where K is the Cantor set obtained from $[0,1]$ by successive removing the middle third of the corresponding intervals. If K_{p} is a set, obtained at the p th step of this process, then A_{p} is an algebra of continuous functions constant on intervals of K_{p}.
Problem 34. Draw Bratteli diagram (for some defining sequence) of the following AFalgebra: $C(X)$, where $X:=\{0\} \cup\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$, and A_{k} consists of all functions constant on $\left[0,1 / 2^{k}\right]$.
Problem 35. Let $\pi: A \rightarrow \mathbb{B}(H)$ be a degenerate representation. Let us denote by H_{0} the invariant subspace $H_{0}:=\{\xi \in H: \pi(a)(\xi) 0$ for any $a \in A\}$. Prove that π induces a representation $\pi^{\prime}: A \rightarrow \mathbb{B}\left(H / H_{0}\right)$, and if π was a faithful representation (an injective homomorphism), then so is π^{\prime}.

Problem 36. Let $\pi: A \rightarrow \mathbb{B}(H)$ be a degenerate representation. Let us denote by H_{0} the invariant subspace $H_{0}:=\{\xi \in H: \pi(a)(\xi) 0$ for any $a \in A\}$. Prove that π induces a representation $\pi^{\prime}: A \rightarrow \mathbb{B}\left(H / H_{0}\right)$, and if π was a faithful representation (an injective homomorphism), then so is π^{\prime}.

Problem 37. Check that $R M(A)=(L M(A))^{*}$ and that $M(A)=L M(A) \cap R M(A)$, so that $M(A)$ is symmetric with respect to the involution.

Problem 38. Prove that a representation $\pi: A \rightarrow \mathbb{B}(H)$ is non-degenerate if and only if for some approximate unit u_{λ} of the algebra A the following condition is satisfied: for any vector $\xi \in H$ there is a λ such that that $u_{\lambda}(\xi) \neq 0$.

Problem 39. Construct an example of an operator on Hilbert C*-module that does not admit an adjoint.
Problem 40. Prove that $\|x\|=\sup _{y \in B_{1}(M)}|\langle x, y\rangle|$, where $B_{1}(M) \subset M$ is the unit ball.
Problem 41. Prove that $\theta_{x, y} \in \mathbb{B}_{A}^{\star}(M)$ by providing an explicit formula for the adjoint.
Problem 42. Prove that $\mathbb{K}_{A}(M)$ is an ideal in $\mathbb{B}_{A}^{\star}(M)$.
Problem 43. Prove that $\mathbb{K}_{A}(A)=A$. Note that if A is non-unital, then $\mathbb{K}_{A}(A)=A \neq$ $\mathbb{B}_{A}^{\star}(A)=D C(A)$ (algebra of double centralizers).

Problem 44. Let A be a C^{*}-algebra, $a \in A, p, q \in A$ - orthogonal projections (i.e. self-adjoint idempotents with $p q=0$). Show that if a is positive and pap $=0$, then $p a q=0$.
Problem 45. Let A be a C^{*}-algebra, $a \in A$. Let us denote by $a A a$ the set of all elements of the form $a b a$, where $b \in A$, and by $a A a$ the closure of this set. A C^{*}-subalgebra $B \subset A$ is hereditary if the conditions $0 \leq a \leq b$ and $b \in B$ imply that $a \in B$.
(1) Check that $\overline{a A a}$ is a C^{*}-subalgebra for any $a \in A$.
(2) Let $p \in A$ be a projection. Verify that $p A p$ is closed.
(3) Show that $p A p$ is hereditary for any projector p.
(4) Show that $\overline{a A a}$ is hereditary for any positive $a \in A$.

Problem 46. Let $X \subset \mathbb{R}$ be the set of points $1,1 / 2,1 / 3, \ldots$ and 0 . Let $C\left(X, M_{2}\right)$ be the set of all continuous functions on X with values in the matrix algebra M_{2}. Let $B_{1}=\{f \in$ $C\left(X, M_{2}\right): f(0)$ is diagonal $\}, B_{2}=\left\{f \in C\left(X, M_{2}\right): f(0)\right.$ has the form $\left.\left(\begin{array}{c}* \\ 0 \\ 0\end{array}\right)\right\}$.
(1) Show that $C\left(X, M_{2}\right), B_{1}, B_{2}$ are C^{*}-algebras.
(2) Find all (two-sided, closed) ideals in $C(X), C\left(X, M_{2}\right), B_{1}, B_{2}$.

Problem 47. Let A be a C^{*}-algebra, $J \subset A$ be an ideal, $a \in A$ is a self-adjoint element. Show that there exists an element $j \in J$ such that $\|[a]\|=\|a-j\|$, where $[a] \in A / J$ is the class $a+J$ of element a. Hint: decompose $a-\|[a]\| \cdot 1=a_{+}-a_{-}$with positive a_{+}, a_{-}and show that $a_{+} \in J$.
Problem 48. Let A be a C^{*}-algebra, $a \in A$ be a self-adjoint element. Show that if the spectrum $\sigma(a)$ is an infinite set, then A is infinite-dimensional.
Problem 49. Describe the GNS construction for the C^{*}-algebra $C[0,1]$ and for a positive linear functional φ
(1) $\varphi(f)=f(0)$,
(2) $\varphi(f)=\frac{1}{2}(f(0)+f(1))$,
(3) $\varphi(f)=\int_{0}^{1} f(x) d x$,
where $f \in C[0,1]$.
Problem 50. Describe the GNS construction for the C^{*}-algebra M_{n} of complex $n \times n$ matrices and for a positive linear functional φ
(1) $\varphi(A)=a_{11}$,
(2) $\varphi(A)=\operatorname{tr}(A)$,
where $A=\left(a_{i j}\right)_{i, j=1}^{n} \in M_{n}$.
Problem 51. Let π, σ be representations of a C^{*}-algebra A on the Hilbert spaces H_{π} and H_{σ}, and let a partial isometry $U: H_{\pi} \rightarrow H_{\sigma}$ satisfy the equality $\sigma(a) U=U \pi(a)$ for any $a \in A$. Show that the image (resp. orthogonal complement to the kernel) of U is an invariant subspace for $\sigma(A)$ (resp. for $\pi(A)$). (U is a partial isometry if $U^{*} U$ and $U U^{*}$ are projections)
Problem 52. (a) Let $M_{n}(A)$ be the set of all $n \times n$-matrices with coefficients from a C^{*}-algebra A. Show that on $M_{n}(A)$ there exists a C^{*}-norm.
(b) Let A be a C^{*}-algebra with norm $\|\cdot\|$, and let $\|\cdot\|^{\prime}$ be another norm on A, equivalent to the first norm. Show that if $\|\cdot\|^{\prime}$ is a C^{*}-norm, then these norms coincide. Deduce from this the uniqueness of C^{*}-norm on $M_{n}(A)$.
Problem 53. Let φ be a state on a C^{*}-algebra A. Suppose that for some self-adjoint element $a \in A$ one has the equality $\varphi\left(a^{2}\right)=\varphi(a)^{2}$. Show that it follows from this that $\varphi(a b)=\varphi(b a)=\varphi(a) \varphi(b)$ for any $b \in A$.
Problem 54. Let $A=c$ be the C^{*}-algebra of all convergent sequences of complex numbers, $c=\left\{\left(a_{n}\right)_{n \in \mathbb{N}}: a_{n} \in \mathbb{C} ; \lim _{n \rightarrow \infty} a_{n}\right.$ exists $\}$. Let us consider it as a C^{*}-subalgebra of the algebra $\mathbb{B}\left(l_{2}\right)$ of bounded operators in the Hilbert space l_{2} of square-integrable sequences. Find the first and second commutant, A^{\prime} and $A^{\prime \prime}$, and (independently) the weak closure of A in $\mathbb{B}\left(l_{2}\right)$.
Problem 55. (a) Show that the weak topology is strictly weaker than the strong topology. (b) Let $P \subset \mathbb{B}(H)$ be the set of all (self-adjoint) projections on a Hilbert space. Show that if $p_{\lambda} \rightarrow p$ weakly converges, where $p_{\lambda} \in P$ and $p \in P$, then $p_{\lambda} \rightarrow p$ strongly converges.
(c) Show that the strong limit of a sequence of (self-adjoint) projections is a projection.
(d) Find an example of a weakly convergent net $p_{\lambda} \rightarrow p$ with $p_{\lambda} \in P$ and $p \notin P$.

Problem 56. Let $H_{n} \subset H$ be the subspace of a Hilbert space H generated by the first n vectors of an orthonormal basis. In the set of all sequences $\left(m_{1}, m_{2}, \ldots\right)$, where $m_{k} \in \mathbb{B}\left(H_{n}\right) \subset \mathbb{B}(H)$, consider the subset A of all sequences such that

- $\sup _{k}\left\|m_{k}\right\|<\infty$;
- the sequences $\left(m_{1}, m_{2}, \ldots\right)$ and $\left(m_{1}^{*}, m_{2}^{*}, \ldots\right)$ are convergent in the strong topology. Show that A is a C^{*}-algebra and that the mapping $\left(m_{1}, m_{2}, \ldots\right) \mapsto$ s - $\lim _{k \rightarrow \infty} m_{k} \in \mathbb{B}(H)$ is a surjective $*$-homomorphism of $A \rightarrow \mathbb{B}(H)$.

Problem 57. Let A be a commutative C^{*}-algebra and let π be its irreducible representation on a Hilbert space H. Show that $\operatorname{dim} H=1$

Problem 58. Let $\left\{e_{i}\right\}_{i=1}^{\infty}$ be an orthonormal basis of a Hilbert space H, and let the operators a, b be given by the equalities $a e_{i}=e_{2 i}$; be $e_{i}=e_{2 i-1}$. Let $E=C^{*}(a, b) \subset \mathbb{B}(H)$ be the C^{*}-algebra generated by a and b.
(a) Check the boundedness of a and b and prove the equalities $a^{*} a=b^{*} b=1, a a^{*}+b b^{*}=$ 1.
(b) Prove that E is not isomorphic to the complete group C^{*}-algebra $C^{*}(G)$ for any group G.
Problem 59. Consider $C[0,1]$ as a C^{*}-subalgebra in $\mathbb{B}(H)$, where $H=L^{2}([0,1])$ (continuous functions act on H by multiplication).
(a) Check that $C[0,1] \cap \mathbb{K}(H)=0$;
(b) Let φ be a linear functional on $C[0,1]$ defined by the equality $\varphi(f)=f(0), f \in$ $C[0,1]$. Find a sequence of $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ vectors of unit length weakly converging to zero in H such that $\varphi(f)=\lim _{n \rightarrow \infty}\left\langle f e_{n}, e_{n}\right\rangle$ for any function $f \in C[0,1]$.

Problem 60. Operators a, b in a Hilbert space H are called compalent if there exists a unitary operator $u \in \mathbb{B}(H)$ such that $u^{*} a u-b \in \mathbb{K}(H)$. Show that if self-adjoint operators a, b are compalent then their essential spectra coincide.

Problem 61. Show that any $\operatorname{AF} C^{*}$-algebra without unity has an approximative unity consisting of an increasing sequence of projections.
Problem 62. (1) Show that $C[0,1]$ is not an AF-algebra.
(2) Construct an injective *-homomorphism $C[0,1]$ into the AF-algebra $C(K)$ of continuous functions on the Cantor set K. Hint: construct a function f on K that takes all rational values from $[0,1]$ and show that $C^{*}(f)$ is isometrically *-isomorphic $C(\operatorname{Sp}(f))=C[0,1]$.

Problem 63. Let $A_{n}=M_{2^{n}}(\mathbb{C}) \oplus M_{2^{n}}(\mathbb{C})$, and let the embedding $\alpha_{n}: A_{n} \rightarrow A_{n+1}$ be given by the formula $\alpha_{n}:\left(\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right) \mapsto\left(\begin{array}{cc|cc}a_{1} & 0 & \mid & 0 \\ 0 & 0 \\ 0 & a_{1} & 1 & 0 \\ \hdashline 0 & 0 & 0 \\ 0 & 0 & a_{1} & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$, where $a_{1}, a_{2} \in M_{2^{n}}(\mathbb{C})$.
(1) Find the Bratteli diagram for the AF algebra $A=\overline{\cup_{n=1}^{\infty} A_{n}}$;
(2) Find whether A is unital.

Problem 64. Find $M(A)$, where $A=\left\{f \in C\left([0,1] ; M_{2}\right): f(0)_{11}=f(0)_{12}=f(0)_{21}=\right.$ $0 ; f(1)=0\}$ (here M_{2} is the algebra of two-dimensional matrices).

