Integrated list of problems (2024)

Problem 1. Give an example of an involutive Banach algebra that is not a C^* -algebra.

Problem 2. Show that a left unit element is also a right one, which has $1^* = 1$; that the identity element is unique and that ||1|| = 1. It is called the *unit of algebra*.

Problem 3. Verify that the algebra C(X) formed by all continuous complex-valued functions on a compact space X and the algebra $C_0(X)$ of all continuous complex-valued functions on a locally compact space X tending to 0 at infinity (that is, $f: X \to \mathbb{C}$ such that for any $\varepsilon > 0$ there exists a compact $K \subseteq X$ such that $\sup\{|f(x)| \mid x \in K\} < \varepsilon\}$ are commutative C^* -algebras if the *supremum-norm*: $||f|| = \sup_{x \in X} |f(x)|$, is taken as the norm and the pointwise multiplication is taken as the multiplication. Moreover, the algebra C(X) is unital.

Problem 4. Verify that the algebra $\mathbb{B}(H)$ of all bounded operators acting on a Hilbert space H is a C^* -algebra with identity. Here as a norm we take the *operator norm* $||a|| = \sup_{h \in H, ||h|| \leq 1} ||a(h)||$, and the multiplication is the composition of operators.

Problem 5. Show that "sum" norm turns A^+ into an involutive Banach algebra, but not into a C^* -algebra.

Problem 6. Prove that A is an ideal in A^+ .

Problem 7. Prove that if $a_0 \in A$ is invertible and $||a - a_0|| < \frac{1}{||a_0^{-1}||}$, then *a* is also invertible, and $a^{-1} = \sum_{n=0}^{\infty} [a_0^{-1}(a_0 - a)]^n a_0^{-1}$.

Problem 8. Show that the quasi-spectrum always contains zero.

Problem 9. Let a and b be commuting elements of a Banach algebra. Then the product ab is invertible if and only if each of the elements a and b are invertible.

Problem 10. Show that $r(a) \leq ||a||$ for any $a \in A$.

Problem 11. Prove that M_A is a locally compact Hausdorff space, and M_{A^+} is its one-point compactification.

Problem 12. Check that if $\varphi : A \to \mathbb{C}$ is a (non-zero) multiplicative functional on A, then the formula $\tilde{\varphi}((a, \lambda)) = \varphi(a) + \lambda$ defines a unique extension of φ to a multiplicative functional on A^+ .

Problem 13. Any ideal I of a commutative unital Banach algebra is contained in some maximum ideal.

Problem 14. Prove the Gelfand theorem for a non-unital algebra.

Problem 15. If a is an invertible element, then the algebra $C^*(a)$ is unital. In this case $C^*(a) = C^*(1, a)$.

Problem 16. Prove that f(Sp(a)) = Sp(f(a)) approximating f by polynomials, and correctly stating what it means that the image is continuous under a uniform approximation, and using the isometricity of the Gelfand transform.

Problem 17. Show that if $a \ge 0$ and $0 \ge a$, then a = 0; and also that $-||a|| 1 \le a \le ||a|| 1$ for every self-adjoint a.

Problem 18. If $0 \leq a \leq b$, then $||a|| \leq ||b||$.

Problem 19. Prove that an algebra with countable approximate unit does not have to be separable.

Problem 20. Prove that a positive element of an arbitrary C^* -subalgebra is a positive element of the entire algebra.

Problem 21. Let $\varphi : A \to B$ be a *-homomorphism of non-unital algebras. Prove that there is a unique unital *-homomorphism $\varphi^+ : A^+ \to B^+$, extending φ .

Problem 22. Let $\varphi : A \to B$ be a *-homomorphism of algebras, with A non-unital, and B unital. Prove that there is a unique unital *-homomorphism $\varphi^{(+)} : A^+ \to B$, extending φ .

Problem 23. Verify that

- If S is self-adjoint, then so is S'.
- The commutant of any set is a unital algebra.
- The commutant of any set is weakly closed.
- Thus, S' is the von Neumann algebra for any self-adjoint set S.
- If $S_1 \subset S_2$, then $S'_1 \supset S'_2$.
- Always $S \subset S''$.
- Therefore S' = S''', S'' = S'''', etc.

Problem 24. Prove that if a self-adjoint element a in a unital C^* -algebra has $Sp(a) = \{0, 1\}$, then a is a nonscalar idempotent.

Problem 25. Let u_{λ} , $\lambda \in \Lambda$, be some approximate unit in a unital algebra. Prove that $1 = \lim_{\lambda \in \Lambda} u_{\lambda}$.

Problem 26. There is a natural bijection between self-adjoint linear functionals on A and (real) linear functionals on A_{sa} .

Problem 27. If A is unital, then a representation π is non-degenerate if and only if $\pi(1) = 1$.

Problem 28. Prove that the matrix algebra M_n is simple for any n

Problem 29. Prove that the image of the matrix algebra M_n under a *-homomorphism is either a zero algebra or an algebra isomorphic to M_n .

Problem 30. Draw Bratteli diagram (for some defining sequence) of the following AFalgebra: the algebra of compact operators $\mathbb{K}(H)$.

Problem 31. Draw Bratteli diagram (for some defining sequence) of the following AFalgebra: the unitization $\mathbb{K}(H)^+$ of the algebra of compact operators $\mathbb{K}(H)$.

Problem 32. Draw Bratteli diagram (for some defining sequence) of the following AFalgebra: the closure of the union of $A_p = M_{2^p}$, with embeddings $A_p \subset A_{p+1}$ of multiplicity 2 according to the formula $a \mapsto \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ (CAR algebra).

2

Problem 33. Draw Bratteli diagram (for some defining sequence) of the following AFalgebra: C(K), where K is the Cantor set obtained from [0, 1] by successive removing the middle third of the corresponding intervals. If K_p is a set, obtained at the *p*th step of this process, then A_p is an algebra of continuous functions constant on intervals of K_p .

Problem 34. Draw Bratteli diagram (for some defining sequence) of the following AFalgebra: C(X), where $X := \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$, and A_k consists of all functions constant on $[0, 1/2^k]$.

Problem 35. Let $\pi : A \to \mathbb{B}(H)$ be a degenerate representation. Let us denote by H_0 the invariant subspace $H_0 := \{\xi \in H : \pi(a)(\xi) 0 \text{ for any } a \in A\}$. Prove that π induces a representation $\pi' : A \to \mathbb{B}(H/H_0)$, and if π was a faithful representation (an injective homomorphism), then so is π' .

Problem 36. Let $\pi : A \to \mathbb{B}(H)$ be a degenerate representation. Let us denote by H_0 the invariant subspace $H_0 := \{\xi \in H : \pi(a)(\xi) 0 \text{ for any } a \in A\}$. Prove that π induces a representation $\pi' : A \to \mathbb{B}(H/H_0)$, and if π was a faithful representation (an injective homomorphism), then so is π' .

Problem 37. Prove that a representation $\pi : A \to \mathbb{B}(H)$ is non-degenerate if and only if for some approximate unit u_{λ} of the algebra A the following condition is satisfied: for any vector $\xi \in H$ there is a λ such that that $u_{\lambda}(\xi) \neq 0$.

Problem 38. Let A be a C^* -algebra, $a \in A$, $p, q \in A$ — orthogonal projections (i.e. self-adjoint idempotents with pq = 0). Show that if a is positive and pap = 0, then paq = 0.

Problem 39. Let A be a C^{*}-algebra, $a \in A$. Let us denote by aAa the set of all elements of the form aba, where $b \in A$, and by \overline{aAa} the closure of this set. A C^{*}-subalgebra $B \subset A$ is hereditary if the conditions $0 \le a \le b$ and $b \in B$ imply that $a \in B$.

- (1) Check that \overline{aAa} is a C^* -subalgebra for any $a \in A$.
- (2) Let $p \in A$ be a projection. Verify that pAp is closed.
- (3) Show that pAp is hereditary for any projector p.
- (4) Show that \overline{aAa} is hereditary for any positive $a \in A$.

Problem 40. Let $X \subset \mathbb{R}$ be the set of points $1, 1/2, 1/3, \ldots$ and 0. Let $C(X, M_2)$ be the set of all continuous functions on X with values in the matrix algebra M_2 . Let $B_1 = \{f \in C(X, M_2) : f(0) \text{ is diagonal}\}, B_2 = \{f \in C(X, M_2) : f(0) \text{ has the form } \begin{pmatrix} * & 0 \\ 0 & 0 \end{pmatrix}\}.$

- (1) Show that $C(X, M_2)$, B_1 , B_2 are C^* -algebras.
- (2) Find all (two-sided, closed) ideals in C(X), $C(X, M_2)$, B_1 , B_2 .

Problem 41. Let A be a C^* -algebra, $J \subset A$ be an ideal, $a \in A$ is a self-adjoint element. Show that there exists an element $j \in J$ such that ||[a]|| = ||a - j||, where $[a] \in A/J$ is the class a + J of element a. Hint: decompose $a - ||[a]|| \cdot 1 = a_+ - a_-$ with positive a_+ , a_- and show that $a_+ \in J$.

Problem 42. Let A be a C^* -algebra, $a \in A$ be a self-adjoint element. Show that if the spectrum $\sigma(a)$ is an infinite set, then A is infinite-dimensional.

Problem 43. Describe the GNS construction for the C^* -algebra C[0, 1] and for a positive linear functional φ

(1) $\varphi(f) = f(0),$ (2) $\varphi(f) = \frac{1}{2}(f(0) + f(1)),$ (3) $\varphi(f) = \int_0^1 f(x) \, dx,$ where $f \in C[0, 1].$

Problem 44. Describe the GNS construction for the C^* -algebra M_n of complex $n \times n$ -matrices and for a positive linear functional φ

(1)
$$\varphi(A) = a_{11},$$

(2)
$$\varphi(A) = \operatorname{tr}(A)$$

where $A = (a_{ij})_{i,j=1}^n \in M_n$.

Problem 45. Let π, σ be representations of a C^* -algebra A on the Hilbert spaces H_{π} and H_{σ} , and let a partial isometry $U: H_{\pi} \to H_{\sigma}$ satisfy the equality $\sigma(a)U = U\pi(a)$ for any $a \in A$. Show that the image (resp. orthogonal complement to the kernel) of U is an invariant subspace for $\sigma(A)$ (resp. for $\pi(A)$). (U is a partial isometry if U^*U and UU^* are projections)

Problem 46. (a) Let $M_n(A)$ be the set of all $n \times n$ -matrices with coefficients from a C^* -algebra A. Show that on $M_n(A)$ there exists a C^* -norm.

(b) Let A be a C^{*}-algebra with norm $\|\cdot\|$, and let $\|\cdot\|'$ be another norm on A, equivalent to the first norm. Show that if $\|\cdot\|'$ is a C^{*}-norm, then these norms coincide. Deduce from this the uniqueness of C^{*}-norm on $M_n(A)$.

Problem 47. Let φ be a state on a C^* -algebra A. Suppose that for some self-adjoint element $a \in A$ one has the equality $\varphi(a^2) = \varphi(a)^2$. Show that it follows from this that $\varphi(ab) = \varphi(ba) = \varphi(a)\varphi(b)$ for any $b \in A$.

Problem 48. Let A = c be the C^* -algebra of all convergent sequences of complex numbers, $c = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{C}; \lim_{n \to \infty} a_n \text{ exists}\}$. Let us consider it as a C^* -subalgebra of the algebra $\mathbb{B}(l_2)$ of bounded operators in the Hilbert space l_2 of square-integrable sequences. Find the first and second commutant, A' and A'', and (independently) the weak closure of A in $\mathbb{B}(l_2)$.

Problem 49. (a) Show that the weak topology is strictly weaker than the strong topology. (b) Let $P \subset \mathbb{B}(H)$ be the set of all (self-adjoint) projections on a Hilbert space. Show that if $p_{\lambda} \to p$ weakly converges, where $p_{\lambda} \in P$ and $p \in P$, then $p_{\lambda} \to p$ strongly converges. (c) Show that the strong limit of a sequence of (self-adjoint) projections is a projection. (d) Find an example of a weakly convergent net $p_{\lambda} \to p$ with $p_{\lambda} \in P$ and $p \notin P$.

Problem 50. Let $H_n \subset H$ be the subspace of a Hilbert space H generated by the first n vectors of an orthonormal basis. In the set of all sequences (m_1, m_2, \ldots) , where $m_k \in \mathbb{B}(H_n) \subset \mathbb{B}(H)$, consider the subset A of all sequences such that

• $\sup_k \|m_k\| < \infty;$

• the sequences (m_1, m_2, \ldots) and (m_1^*, m_2^*, \ldots) are convergent in the strong topology. Show that A is a C*-algebra and that the mapping $(m_1, m_2, \ldots) \mapsto$ $s - \lim_{k \to \infty} m_k \in \mathbb{B}(H)$ is a surjective *-homomorphism of $A \to \mathbb{B}(H)$.

Problem 51. Let A be a commutative C^* -algebra and let π be its irreducible representation on a Hilbert space H. Show that dim H = 1

4

Problem 52. Consider C[0,1] as a C^* -subalgebra in $\mathbb{B}(H)$, where $H = L^2([0,1])$ (continuous functions act on H by multiplication).

- (a) Check that $C[0,1] \cap \mathbb{K}(H) = 0$;
- (b) Let φ be a linear functional on C[0, 1] defined by the equality $\varphi(f) = f(0), f \in C[0, 1]$. Find a sequence of $\{e_n\}_{n \in \mathbb{N}}$ vectors of unit length weakly converging to zero in H such that $\varphi(f) = \lim_{n \to \infty} \langle fe_n, e_n \rangle$ for any function $f \in C[0, 1]$.

Problem 53. Operators a, b in a Hilbert space H are called *compalent* if there exists a unitary operator $u \in \mathbb{B}(H)$ such that $u^*au - b \in \mathbb{K}(H)$. Show that if self-adjoint operators a, b are compalent then their essential spectra coincide.

Problem 54. Show that any AF C^* -algebra without unity has an approximative unity consisting of an increasing sequence of projections.

Problem 55. (1) Show that C[0, 1] is not an AF-algebra.

(2) Construct an injective *-homomorphism C[0, 1] into the AF-algebra C(K) of continuous functions on the Cantor set K. Hint: construct a function f on K that takes all rational values from [0, 1] and show that $C^*(f)$ is isometrically *-isomorphic $C(\operatorname{Sp}(f)) = C[0, 1]$.

Problem 56. Let $A_n = M_{2^n}(\mathbb{C}) \oplus M_{2^n}(\mathbb{C})$, and let the embedding $\alpha_n : A_n \to A_{n+1}$ be given by the formula $\alpha_n : \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} \mapsto \begin{pmatrix} a_1 & 0 & | & 0 & 0 \\ 0 & a_1 & | & 0 & 0 \\ 0 & 0 & | & a_1 & 0 \\ 0 & 0 & | & a_1 & 0 \\ 0 & 0 & | & 0 & a_2 \end{pmatrix}$, where $a_1, a_2 \in M_{2^n}(\mathbb{C})$.

(1) Find the Bratteli diagram for the AF algebra $A = \overline{\bigcup_{n=1}^{\infty} A_n}$;

(2) Find whether A is unital.