PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Pages 000-000

S 0002-9939(XX)0000-0

DISCRETE GROUPS ACTIONS AND CORRESPONDING
MODULES

E. V. TROITSKY

(Communicated by David R. Larson)

ABSTRACT. We address the problem of interrelations between the properties
of an action of a discrete group I' on a compact Hausdorff space X and the
algebraic and analytical properties of the module of all continuous functions
C(X) over the algebra of invariant continuous functions Cr(X) ? The present
paper is a continuation of our joint paper with M. Frank and V. Manuilov.
Here we prove some statements inverse to the ones obtained in that paper: we
deduce properties of actions from properties of modules. In particular, it is
proved that if for a uniformly continuous action the module C(X) is finitely
generated projective over Cr(X), then the cardinality of orbits of the action
is finite and fixed. Sufficient conditions for existence of natural conditional
expectations C(X) — Cp(X) are obtained.

1. INTRODUCTION

Given a discrete countable group I' acting on a compact Hausdorff space X, one
can talk about the following notions:

(1) The orbits (their cardinality and other dynamical properties).

(2) In some cases using invariant means on functions on T' it is possible to define
so-called conditional expectations Er : C(X) — Cr(X) and study their properties.

(3) It is possible to consider properties of the module of all continuous functions
C(X) over the algebra of invariant continuous functions Cr (X). In some cases with
the help of Er it can be equipped with a Cr(X)-valued C*-inner product.

The study of the relations between these properties was started systematically
in [5] (for preliminary and related research see also [1, 2, 4, 7, 8, 10, 14, 15, 18] and
the overview in [5]).

In the present paper we prove some statements inverse to the ones obtained in
the aforementioned paper: from some properties of modules (3) we deduce some
properties of actions (1). In particular, it is proved that if for a uniformly continu-
ous action the module C'(X) is finitely generated projective over Cr(X), then the
cardinality of orbits is finite and fixed.
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Some sufficient conditions of the Lyapunov type for existence of natural condi-
tional expectations C'(X) — Cr(X) are obtained.

In the last section we give a description of the class of module-infinite algebras
introduced in the previous sections.
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2. PRELIMINARIES AND REMINDING

The necessary information about Hilbert C*-modules can be found in [11] and
[12].

Suppose, I is a discrete countable group and X is a locally compact Hausdorff T'-
space. Let us denote by Mp(f) or simply by M (f) the invariant mean of a bounded
function f : ' — C if it exists (if I' is amenable or f is almost periodic [6]).
Let Cr(X) be the algebra of continuous invariant functions. The algebra of all
continuous functions C'(X) is a module over Cr(X). Let us denote by L, the left
translation on functions on I': (L) (h) := ¢(gh).

Let us reformulate some definitions and statements from [5]. Actions will always
be assumed to satisfy the following condition.

Definition 1. [5, Def. 2.1] An action of a topological group G on a locally compact
Hausdorff space X is uniformly continuous if for every point x € X and every
neighborhood U, of = there exists a neighborhood V, of z such that ¢g(V,) C U,
for every g € G, where GG, is the isotropy subgroup at the point z.

Definition 2. (cf. [5, Def. 2.3]) Let us define a conditional expectation Er :
C(X) — Cr(X) by the formula

(Er(p))(x) := Mr(¢z),  where  ¢q(g) = p(g).

Remark 3. Of course, this expectation Er is not always defined. The obstructions
are 1) existence of an averaging at each point, 2) the resulting function Er(y) can
be discontinuous. In their absence one gets a linear mapping Fr : C(X) — Cr(X).
It is evident that since M (1) = 1, this mapping is identical on invariant functions,
hence a projection. The inequality ([6]) inf{f(g)} < Mr(f) < sup{f(g)} shows
that ||Er|| = 1 and so we really have a conditional expectation.

Remark 4. As it was shown in [5, p. 840], in the case of finite orbits the averaging
over orbits gives the same map Er. Indeed, let T := {g1, ..., gn} be representatives
of left cosets of ', in I'. Then

Mr(ps) = Mr | D @algt)Xgerm | = D #(gs2)Mr(xg, 1)
gr€T g €T
= Y olgew)Mr(xu) = const - Y o(grw),
g €T g €T

where x are the characteristic functions. Taking f = 1 we obtain const = 1/N.
This is a proof for amenable groups. For an almost periodic function it is evident
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that the averaging over the finite orbit gives a constant function, which is a convex
combination of IV translations of the original function.

Definition 5. If Er is well-defined one can equip C(X) with the structure of a
pre-Hilbert C*-module over Cr(X) by the formula

() e = Er (™).
Remark 6. Let us remind that a conditional expectation £ : A — B C A is said
to be faithful if E(x*x) = 0 implies x = 0 for z € A. This is always true for Er.

Proposition 7. [5, Prop 1.1] Let A be a C*-algebra and E : A - B C A be a
conditional expectation with fized point set B. There then exists a finite real number
K > 1 such that the mapping (K - E —ida) is positive if and only if E is faithful
and the (right) pre-Hilbert B-module {A, E({-,-)a)} is complete with respect to the
norm || E((-, -)A)||}9/2 (where {a,b) 4 = a*b for a,b € A).
Theorem 8. (combination of [5, Lemmas 2.9 and 2.11 and Theorem 2.12]) Suppose
a discrete group T' acts on a locally compact Hausdorff space X in such a way that
k= max{#(lz) : € X} < +oo. Then Er is well-defined.

If X is a normal space, then K(Er) = k. Hence, by Prop. 7, C(X) is a Hilbert
C*-module over Cr(X).

Theorem 9. [5, Theorem 3.6] Suppose, X is a compact Hausdorff space, T is a dis-
crete group acting in a uniformly continuous manner on X, and all orbits consist of
the same finite number of points. Then the Hilbert Cr(X)-module {C(X), Er({-,-))}
is finitely generated and projective.

A Hilbert B-module M is called self-dual if there is a natural isomorphism of M
onto the module M’ of all anti-B-linear bounded functionals on M. If B is unital,
then any finitely generated projective module is self-dual. If M"” = M, then the
module M is called (B-)reflexive.

Theorem 10. [5, Theorem 3.9] Let X be a compact Hausdorff space and T' a
discrete group acting on X wuniformly continuously. If there exists an integer n
such that the cardinalities of all orbits do not exceed n and the number of orbits
whose cardinality is strictly less than n is finite, then the Hilbert Cr(X)-module
{C(X),Er((., )} is Cr(X)-reflexive.

The following final form of the previous theorem was obtained by V. Seregin.

Theorem 11. [17] Let X be a compact Hausdorff space and T' a discrete group
acting in a uniformly continuous manner on X. If ' acts in such a way that the
cardinalities of all orbits are uniformly bounded, then the Hilbert Cr(X)-module
{C(X),Er({., )} is Cr(X)-reflezive.

From here on X is compact and separable, hence metrizable and normal.

3. INVERSE THEOREMS

In this section we will obtain some theorems, inverse to the main statements of
the previous section.
Let us remind the following statement.

Theorem 12. Let Z be an infinite compact Hausdorff space. There is no (complete)
Hilbert space structure on C(Z) with the norm satisfying || f||n < [|fllc(z)-

Proof. By [3, Theorem II.2.5] the two norms have to be equivalent. But C(Z) is
reflexive if and only if Z is finite [3, IV.13.15]. O
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Theorem 13. Let I' be a discrete group acting uniformly continuously on a com-
pact separable Hausdorff topological space X. Then the following properties are
equivalent

(i) cardinalities of all orbits are uniformly bounded;
(ii) Er is well-defined and there exists a finite real number K > 1 such that the
mapping (K - E —ida) is positive;
(iii) Er is well-defined and the corresponding pre-Hilbert module is complete;
(iv) Er is well-defined and the corresponding pre-Hilbert module is reflexive.

Proof. (i)=(iv) is Theorem 11.

(iv)=-(iii) is evident.

(i)« (iii) is Proposition 7.

In order to prove (ii)=-(i), let us suppose the opposite.

Notice that if Y C X is a closed invariant subspace, then the pre-Hilbert Cr(Y')-
module C'(Y) is also complete (see Lemma 19).

Assume first that there is an infinite orbit I'z. Taking Y = T'z and applying
the remark above we obtain that C(Y) could be equipped with the Hilbert space
structure, because Cr(Y') = C. Contradiction with Theorem 12.

The other case is the case of finite orbits of arbitrary cardinality. Here we can
argue as in [5, Theorem 2.12]. By Proposition 7 there exists a real number K > 1
such that K - Ep(p) > ¢ for any positive function ¢ : X — C. Choose a point
x € X with k, := #(I'z) > K. Then we can obtain a neighborhood U, of x such
that g;U, Ng;U, = 0 for i # j and {g1 = 1,92,...,9m} = T := /T, where [',
is the isotropy subgroup. For a continuous non-negative function f with support
inside U, (cf. [16, Th. V.17.4] for the existence) we have the inequality

K- Be(f)e) = Ko Y flgan) < f(z).

T ga€T,

This contradicts the definition of K. O

Theorem 14. Let T be a discrete group acting uniformly continuously on a compact
separable Hausdorff connected topological space X . Suppose that the averaging over
orbits defines a structure of a self-dual Hilbert module on C(X) over the algebra of
invariant continuous functions Cr(X). If all orbits are finite, then they have the
same cardinality.

Proof. Let W C X be the open subset consisting of all points from orbits of the
maximal length k. Suppose W # X and take z € WN(X\W) (since X is connected,
this is possible).

Then for any neighborhood U of x there exist y € U NW and g € ', such that
gy # y, where [, is the stabilizer of z. Indeed, suppose the opposite: there exists
a neighborhood U such that any element y € U N W is I, invariant, i.e. I'y C I'y,.
Then #(Tz) > #(Ty), we have a contradiction.

So, we can choose a sequence of elements y, € W of different orbits (due to
finiteness of orbits) and a sequence g, € I'; such that y, = = (n — o0) and
Yh = gnYn 7 Yn. Since X is normal, we can choose (passing to a subsequence, if
necessary) two sequences of open neighborhoods W D> V,, 3 y, and V! = ¢, V,, 3 v/,
non-intersecting with each other and with = and satisfying the following condition:
for any neighborhood V' of = the sets V,, and V, are inside V for all large n. Take
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continuous functions
on: X —[0,1], onl(yn) =1, supp n C Vi,
e X = [-1,00,  ¢h(y,)=-1, suppy, CVy,

P (gnz) = —pn(2).
Define the function ¢ : X — [—1,1] to be equal to ¢, on V,, to ¢!, on V! and
vanish in other points. It is continuous in all points except of . Then F(f) :=
Er(p f) is a Cr(X) functional on C'(X). It can not be presented as Er(g f) with
g € C(X). Indeed, the desired g has to coincide with ¢ on the open invariant set
W. Contradiction with self-duality. O

Lemma 15. Suppose X is a compact normal space and C(X) is a finitely generated
module over Cr(X). Then the cardinality of each orbit is finite.

Proof. Suppose there exists an infinite orbit. Then the dimension (algebraic) of the
space of continuous functions on it (or its closure) is infinite. Hence it can not be
finitely generated over constants (invariant functions). By the Tietze theorem all
of these functions are the restrictions of some continuous functions to the closure
of the orbit. Hence the same statement is true for all functions. O

Definition 16. A C*-algebra A is called module-infinite (MI) if each countably
generated Hilbert A-module is projective finitely generated if and only if it is self-
dual. Let us remark that a projective finitely generated module over a unital algebra
is always self-dual. We will give a description of MI algebras in Section 6.

Theorem 17. Let ' be a discrete group acting uniformly continuously on a com-
pact separable Hausdorff connected topological space X . Suppose the averaging over
orbits defines a structure of a self-dual Hilbert module on C(X) over the algebra
Cr(X). If Cr(X) is MI, then all orbits have the same cardinality.

Proof. By Lemma 15 the orbits are finite. Suppose that there are orbits of cardi-
nalities k£ and smaller. Let W C X be the open subset formed by all points from
the orbits of cardinality > k. Then W # X and we can take x € WN (X \ W) (since
X is connected, it is possible). So #(I'z) = m < k. The proof could be completed
as for Theorem 14. O

4. LOCALIZATION AND GLOBALIZATION

It turns out that we can deduce facts about cardinality of orbits from a purely
algebraic data.

Let us start from the following evident lemma, which formulates an idea from
the previous section in a more general way.

Lemma 18. Let C(X) be m-generated over Cr(X). IfY is a closed T'-invariant
subspace of X, then C(Y') is m-generated over Cr(Y').

Lemma 19. Suppose, X is a compact separable Hausdorff space, Er is well-defined
and the corresponding pre-Hilbert module is complete. If Y C X is a closed invari-
ant subspace, then the pre-Hilbert Cr(Y)-module C(Y') is also complete.

Proof. By Proposition 7 there exists a real number K > 1 such that K- Er(p) > ¢
for any positive function ¢ : X — C. Let » : Y — C be a positive function. By the
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Tietze theorem, there is a positive continuous extension of @ up to p : X — C. We
have

K-Er(p) 2¢, K-Er(p)ly 2¢ly, K-Ep(®)=¢.
Applying Proposition 7 in the opposite direction we complete the proof. a

Lemma 20. If an orbit Y = [z consists exactly of k points, then C(Y") is the free
k-generated module over Cp(Y').

Proof. Cr(Y) = C and C(Y) = C* as a C-module. O

Lemma 21. If an orbit Y = L'z is infinite, then C(Y) is not a finitely generated
module over Cr(Y').

Proof. Or(Y) = C, and the algebra of continuous functions on an infinite compact
Hausdorff space is C-infinite. O

We need the following statement.

Proposition 22. Let C(X) be m-generated over Cr(X), where X is a compact
separable Hausdorff space. Then the cardinality of each orbit does not exceed m.

Proof. The statement is a combination of Lemmas 18, 20, and 21. O

Theorem 23. Suppose, an action of discrete group I' on a compact separable Haus-
dorff space X is uniformly continuous. Let C(X) be a finitely generated projective
module over Cr(X). Then all orbits have the same finite cardinality.

Proof. By Proposition 22 the cardinality of orbits is bounded by m. Hence, by
Theorem 8 Er is well-defined and the pre-Hilbert module C(X) over Cp(X) is
complete. Since it is finitely generated projective, it ia self-dual. So, we have both
properties and we do not need MI to complete the proof as in Theorem 17. a

5. EXISTENCE THEOREM

Starting from here we will concentrate on some specific properties of an action of
an (infinite) discrete group G on a compact Hausdorff separable space X . Since such
spaces are metrizable, we may fix a metric p on X. Of course, the considerations
below can be formulated using topology and neighborhoods instead of the distance
and e-neighborhoods.

In the present section we will obtain some sufficient conditions for Er to be
well-defined.

Let us start with a couple of examples.

Example 24. Let X C R? consist of 2 circles

r = cos2mt
Sy : y = sin2xt t €10,1],
z = =1,
and non-uniform spiral
T = COS2TT
¥ y = sin2rr T € [0,1].

z = 2 .arctan T,
™
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Let the generator g of I' = 7Z act on all three components by

1 1
t—=t+—, T T+ —.
n n

Since Z is amenable, the pointwise value of Er is defined. If o : X - Ry C Cis
a non-negative continuous function with
(10|S+ = 0> (10|Z =1 for t < 0> §0|S, = ]-7
then Er(¢)|s, =0 and Er(¢)|s > 0, so that the function Er(yp) is discontinuous.

In this example the action is not uniformly continuous and we always emphasized
that these are the bad ones. Unfortunately, the next example shows that the
condition on action to be uniformly continuous does not help much either.

Example 25. Let X and I be as in the previous example, but the action be defined
by
t—t+a, T—=T+a,

where «a is a positive irrational number. Then the isotropy group of each point
of X is trivial. Hence, the condition of uniform continuity holds automatically.
Nevertheless, a discontinuous Er(p) corresponds to the same function .

Remark 26. Let in any of these examples z € ¥. Then for the aforementioned
¢ the function ¢, : Z — C is not almost periodic. Of course, for amenable I' = Z
this is not an obstruction, but a similar phenomenon can occur for non-amenable
groups too.

Now we introduce a condition which is sufficient to overcome these difficulties.
Definition 27. An action of a group I on a metric space X is called (Lyapunov)
stable if for any € > 0 and any z € X there exist § > 0 such that

plgz,gy) <e forany gel if p(z,y) <9.

The following statement is evident.

Proposition 28. If an action is stable, then it is uniformly continuous.
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Proposition 29. Let a discrete group I' act on a compact separable Hausdorff space
X in a stable way. If ¢ : X — C is a continuous function, then for any x € X the
function ¢, : T = C, ¢.(9) := p(gz), is almost periodic, and therefore its mean
M(pz) is well-defined.

Proof. Let € > 0 be arbitrary. Since X is compact and ¢ is continuous, it is
uniformly continuous, in particular, there exists £ such that

(1) lo(y) —p(2) <e if p(zy) <€

For each point gz of the orbit let us find an e4-neighborhood U, with the following
property:

(2) p(hgz,hy) <&  forany heTify e U,.

Let Uy, ..., U,,, be a finite subcovering of the (closure of) the orbit I'z. Then the
functions Ly ., s =1,...,m, form an e-net for the set Lyp,, g € I', with respect
to the uniform norm. Indeed, for any g € T" we can choose so € {1,...,m} such
that y = gz € Uy, . Then by (1) and (2) we have

sup |(Lgpz)(h) = (Lg,, pz) (h)] = sup [p(hgz) — p(hgs,z)| < e.
hel hel

O

Theorem 30. Let a discrete group I' act on a compact separable Hausdorff space
X. If the action is stable, then Er is well-defined.

Proof. By Proposition 29 we only need to verify continuity of the mean M (p,) in
xz € X. Let z € X and ¢ > 0 be arbitrary. Let us remind (cf. [6, pp. 250-251])
that we can choose hq,...,h, € [' in such a way that the uniform distance on I' xI'
between the function

p
YD i TXTC (where (Dys)(gn,02) = Dloahae)

Jj=1

and some constant is less then €. In this case the uniform distance satisfies the
inequality

1 p
M(p,) — 5 > Dujpe| <2e.
Jj=1 “

Let us choose a d-neighborhood U of z such that

lo(gy) — e(gz)| <e, forany g€ T, y € U.

This neighborhood can be found as in the proof of Proposition 29: ¢ — & — 4. More
precisely, first we can find € > 0 such that |p(y) — ¢(z)| < € whenever p(y,z) < €
(using compactness of X). Then, by stability of the action, we can find for our
fixed  a number § > 0 such that p(gy, gx) < € for any g € " whenever p(y,z) < 9.
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Then for any y € U one has

1 p
- ZDhj‘Py (91,92) =

1< 1

= EZD’U"OI (91,92) +1_72 oy(g1hjg2) — 0e(91hjg2))
, =
1< 1

= BZD’”% (91,92) +1—)Z (91h592y) — ©(g1hjg2)) .
, =

Each term of the second summand is less then . Hence, the second summand is
less then . Thus,

1 p
M () —];ZDhij < 3e.
] .

Therefore, considering M (¢, ) as an arbitrary constant, we have

1 p
M(py) — ’ > Dpyipu| <6z

Jj=1

Finally,
[M(py) = M(pz)| < 9e.

6. COMMUTATIVE MI ALGEBRAS

Definition 31. A commutative unital C* algebra A = C(Y) is said to be DI
(divisible infinite) if for any infinite sequence u; of its elements of norm 1 > |Ju;|| >
C > 0 there exist a subsequence i(k) and elements 0 < by, € A of norm 1, such that

(i) the supports of by in Y are pairwise disjoint, and

(ii) for each k there exist points yi,y; such that by(yx) = 1, y;, & U;suppb;,
|wick) ()| > 6, |wiwy(yx)| > 9, and the sequences {y;} and {y;} have a common
accumulation point. In particular, ), bf is a discontinuous function for any integer
s> 1.

Theorem 32. If a commutative unital C*-algebra A is DI, then it is MI.

Proof. We have to prove that any countable generated self-dual Hilbert A-module
M is finitely generated projective. By the Kasparov stabilization theorem [9] (see
also [11, 12]) one has M @ [2(A) =2 I3(A), where I5(A) is the standard Hilbert
module (see, e.g. [12]). Denote by p : I3(4) = M C I3(A) the corresponding
orthoprojection. Let p; : I2(A) — E; = A7 be the orthoprojection on the first j
standard summands of l5(A4). Two opportunities can arise: 1) ||(1 — p;)pl| = 0 as
j — 00, and 2) the opposite case.

1) Let us show that in this case M is finitely generated projective. One can
argue as in [13]: for a sufficiently large j the operator

[ pi(x) ifzxeM,
J(m)—{ v ifee M1 (A),
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is close to identity, hence an isomorphism. It maps M isomorphically onto a direct
summand of Ej;.

2) In this case (changing the standard decomposition, if necessary) we can find
a sequence j(k) such that for each k there exists an element z; € M of norm 1

such that its j(k)-th entry zi(k) with respect to the standard decomposition has
the norm greater than some fixed C > 0. According to Def. 31 let us choose
functions by (for the sake of notational brevity we assume that we do not need to
pass to a subsequence the second time). Then the formula 8(z) = >, byz/* defines
a functional on I5(A). It is evident that it does not admit an adjoint on I2(A),
because by, /4 0 as k — o0o. Let us show that there is no adjointable functional
a on ly(A) such that a|rs = B|m, and hence, B|a is a non-adjointable functional
on M and M is not a self-dual module. Indeed, suppose, there exists an element
a = (a1,a2,...) € M C l>(A) such that a(z) := Y, a;a" = B(z) for any z € M.
Then

(3) (a,a) < Z b:
k

(the last element is a bounded measurable, but discontinuous function, see Def.
31 (ii)), because for any continuous positive function f, which is equal to 1 on
Uj<k suppb; and 0 on Ujs supp b; (the existence follows from normality of Y') one
has Bfr = afr + (8 — a)fr. But Bfi is an element of [2(A) (or, more precisely,
an adjointable functional 8fi(z) = >, brz?*). Let bfy be the corresponding
element. Then bf, = afy+ (b—a)fx is the decomposition corresponding to I(A) =
M @ 13(A). Indeed, a € M, and for any x € M, ((b — a)fr,z) = 0, because
a(z) = B(x) for those . The Pythagorean theorem for Hilbert modules shows that
(a,a) ff <3 ;< b3 Taking all fi’s one obtains (3).
On the other hand,

(@,a)(yi) > (a,zi)(zi, a) () = 3 bzl ™ 21 by (ys) = 02 (y) 2 () > 6%
m,k

But from (3) one obtains (a,a)(y;) = 0. Hence, (a,a) does not belong to A. A
contradiction. O

Now we describe consequences of this fact for the case studied in the present
paper.
Theorem 33. A commutative separable unital C*-algebra A is M1 if and only if
its Gelfand spectrum Y has no isolated points.

Proof. If Y has an isolated point, a separable Hilbert space arises as one of self-dual
modules, hence, MI does not hold.

Now, suppose, Y has no isolated points, in particular it is infinite. Since Y is
a compact Hausdorff separable space, the topology is generated by some metric p.
For any given sequence u; of norm > C' we can find a sequence of different points
¥ such that |u;(y;)| > 2C/3.

Since Y is compact, one can pass to a convergent subsequence yj = ¥;x). For
a convergent sequence by induction we can choose € such that the corresponding
ep-neighborhoods Uy of y; are pairwise disjoint. Then we can choose y;, # yi
inside these neighborhoods so close to yx that |u;;)| > C/2. After that one can
choose functions by, such that bx(yx) = 1 and supp by, C Uy, \ y},. It remains to take
§=CJ2. O
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Corollary 34. Suppose, X is a compact connected separable Hausdorff T'-space.
Then Cr(X) is MI if and only if X/T has at least two separated points.

Proof. The Gelfand spectrum Y of Cp(X) is a quotient space of X/T" with the
respect to the equivalence of non-separated points. Since X is connected, Y is
connected too. So, by Theorem 33, Cr(X) is MI if and only if Y is not reduced to
one point. O
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