
Program

1. Metric spaces and topological spaces: basic concepts.

2. Continuous maps. Connectedness and arc connectedness.

3. Hausdorff and normal spaces. The refinement theorem. Uryson’s lemma.

4. Partition of unity on normal spaces. Normality of Hausdorff compacts. Continuous
bijection onto a Hausdorff space.

5. Definitions of a manifold and of a smooth map. Examples and non-examples.

6. Existence of an open balls atlas and of smooth partition of unity.

7. Definitions of tangent vectors and their equivalence.

8. Definitions of tangent map and their equivalence. Regular values.

9. Definition of a submanifold. Submanifolds and embeddings.

10. Pre-image of a regular value as a submanifold.

11. Whitney theorem. Tangent bundle.

12. Manifolds with boundary.

13. Orientation, examples. Orientation of boundary.

14. Riemannian metric, existence, bilinear forms on tangent spaces.

15. Lie groups: main theorems. Classical matrix groups as Lie groups.

16. Tensor fields and basic tensor operations. Symmetric and alternating tensors.

17. Exterior product. Bases. Differential forms of maximal degree.

18. Fiber bundles, morphisms, cocycle approach.

19. Vector bundles. Example: tensor bundle. Principal bundles.

20. Operations on vector bundles. Tensor fields as sections of vector bundles.

21. Covariant differentiation on Rn.

22. Properties of a connection. Definition of ∇ by its properties.

23. Levi-Civita connection, existence and uniqueness theorem, properties.

24. The parallel transport w.r.t an affine connection.

25. Definition of a geodesic, existence and uniqueness theorem.

26. Theorem about short geodesics.

27. Exterior derivative and its properties. Closed and exact forms. De Rham cohomology.
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28. Exterior derivatives and pull-back. Pull-back in cohomology.

29. Differential forms on M × I. Cohomology and homotopies.

30. Definition of integral of a form. Its properties. The general Stokes formula.

31. Riemann curvature tensor (two approaches). Symmetries of the Riemann curvature
tensor (without proof).

32. Flatness of an affine connection. Transport along infinitely small coordinate square
and along two homotopic paths.

33. Lie algebra of a Lie group.

34. Maurer-Cartan forms. Trivializations of TG of a Lie group G.

35. Vertical tangent bundle. Ehresmann connection. Existence.

36. Pull-back of an Ehresmann connection. Parallel transport for Ehresmann connections.

37. Connector and its properties.

38. Koszul connection(s). Relation between Ehresmann connection and Koszul connection.

39. Fiberwise inner products. Orthogonal complement of a subbundle. Stable trivializa-
tions.

40. Homotopies and isomorphisms of vector bundles.

41. Equivalences of bundles. Definitions of reduced K-groups. Grothendieck group of a
semigroup. Cancellation property.

42. Definitions of K-groups. Their connection with reduced K-groups. Homotopy prop-
erties.
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List of problems

1. Suppose that f : M → N is smooth and Q0 ∈ N is a regular value of f . Then
MQ0 := f−1(Q0) is a smooth submanifold dimMQ0 = dimM − dimN . As a local
coordinates in some neighborhood on MQ0 one can take some (m − n) coordinates of
M .

2. Give an example of immersion, which is bijective on its image, but is not an embedding.

3. Find an example of smooth homeomorphism, which is not a diffeomorphism.

4. Find an example of a manifold and two non-compatible smooth structures on it, i.e.,
two smooth atlases (Ui, ϕi) and (Vj, ψj) such that {(Ui, ϕi), (Vj, ψj)} is not a smooth
atlas.

5. Let f : X → X be a continuous self-map of a Hausdorff space. Prove that the set of
fixed points Ff := {x ∈ X | f(x) = x} is closed.

6. Find an example of connected space, which is not arc-connected.

7. Prove that ny interval [a, b] ⊂ R is connected and arc connected.

8. Prove that (a, b), [a, b) and [a, b] (subsets of real line) are pair-wise non-homeomorphic.

9. Give an example of a continuous bijection, which is not a homeomorphism.

10. Suppose, X = F1 ∪ F2, where F1 and F2 are closed subsets, and f : X → Y is a map.
Then f is continuous iff f |F1 : F1 → Y and f |F2 : F2 → Y are continuous.

11. A connected orientable manifold can be oriented exactly in two ways.

12. A path changing the orientation is a closed path (γ(0) = γ(1)) such that there exists a
collection of charts U1, . . . , Uk, which cover this path, each chart intersects only with its
two neighboring charts, the intersections are connected, and all Jacobians of transition
maps are positive, except for one. Prove that a manifold is not orientable iff there
exists a changing the orientation path for it.

13. A local orientation is a choice of orientation (i.e., a basis) in each tangent space. A
local orientation is locally constant, if, for each connected chart U the standard basis
∂i defines a local orientation (over this chart), which is either the same as the local
orientation in all points, or is the opposite to it in all points. Prove that a (connected)
manifold is orientable iff it has a locally constant local orientation.

14. Prove that spheres Sn, for any n , and the torus T 2 are orientable.

15. Prove that any complex analytical manifold is orientable (as a real manifold).

16. Prove that a Möbius strip and the projective plane RP 2 are non-orientable manifolds.

17. Prove that TeSp(2n,K) is defined by JATJ = A.

18. Prove that TeU(n) is defined by A
T

= −A.
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19. Prove that TeSO(n) is defined by AT = −A.

20. Prove that TeO(n) is defined by AT = −A.

21. Prove that the matrix group SO(n) is a Lie group and closed Lie subgroup of GL(n,R).

22. Prove that the matrix group SL(n,K) is a Lie group and closed Lie subgroup of
GL(n,K).

23. Prove that the matrix group U(n) is a Lie group and closed Lie subgroup of GL(n,C).

24. Prove that the matrix group O(n) is a Lie group and closed Lie subgroup of GL(n,R).

25. Prove that A ∈ Sp(2n,K) iff ATJA = J , where J =

(
0 I
−I 0

)
.

26. Let a Lie group H be an open subgroup of a Lie group G. Prove that H is closed.

27. Prove that any tensor of type (1, 1), which is invariant under orthogonal coordinate
changes, is a scaling of δij (i.e. is equal to λδij).

28. Prove that any tensor with p+ q = 3 invariant w.r.t. any coordinate changes is equal
to 0.

29. Prove that Ci
i , C

i
jC

j
i , C

i
jC

j
kC

k
i , can be expressed in terms of coefficients of the polyno-

mial det(C − λE) .

30. Show by example that a transposition of an upper and a lower indexes is not a tensor
operation. Consider the case of a tensor of type (1, 1) (linear operator). Conclude
in particular that the property of a matrix of an operator to be symmetric Ci

j = Cj
i

depends on coordinate system.

31. Suppose that a tensor field X is of type (1, 0) and W is of type (0, 1). Find the rank
of X ⊗W .

32. Represent the trace of a matrix as a result of tensor operations.

33. Represent the determinant of a matrix as a result of tensor operations.

34. Find the type of tensors formed by coefficients of

(a) vector product,

(b) mixed (triple) product

of vectors in R3. Prove that these tensors are obtained from each other by index raising
and lowering.

35. Consider the Möbius band EM as the following quotient space of R× (−1, 1):

EM = (R× (−1, 1))/ ∼, where (x, t) ∼ (x+ 2πn, (−1)nt), n ∈ Z.

For
S1 = R/ ≈, where x ≈ x+ 2πn, n ∈ Z,

define π : EM → S1 by π([x, t]) = [x]. Prove that this is a fiber bundle. Find an
appropriate cocycle with G = Z2, F = (−1, 1).
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36. Prove that π : R→ S1, S1 ⊂ C, π(t) = e2πit, is a covering with F = Z.

37. Prove that π : S1 → S1, S1 ⊂ C, π(z) = z2, is a covering with F = Z2 = Z/2Z.

38. Find the appropriate cocycle for the covering π : R→ S1, S1 ⊂ C, π(t) = e2πit.

39. Find the appropriate cocycle for the covering π : S1 → S1, S1 ⊂ C, π(z) = z2.

40. Prove that there is no sections for the covering π : R→ S1, S1 ⊂ C, π(t) = e2πit.

41. Prove that there is no sections for the covering π : S1 → S1, S1 ⊂ C, π(z) = z2.

42. Consider S2n−1 as the subset of Cn given by S2n−1 = {z ∈ Cn : ‖z‖ = 1}, where
z = (z1, . . . , zn) and ‖z‖ =

∑
zizi. Let S1 = U(1) act on S2n−1 by (a, z) 7→ az =

(az1, . . . , azn). The quotient (the space of orbits) is CP n−1. We obtain the Hopf map
πn : S2n−1 → CP n−1. Prove that this is a principal U(1)-bundle (Hopf bundle).

43. Let π1 : E1 → M and π2 : E2 → M be vector bundles and let ∆ : M → M ×M
be diagonal map P 7→ (P, P ). Then one can define πE1×E2 : E1 × E2 → M × M .
Verify that this is a vector bundle. Prove that the Whitney sum E1 ⊕ E2 is naturally
isomorphic to the pull-back ∆∗πE1×E2 .

44. Prove that the velocity field of a geodesic of a Levi-Civita connection has constant
length (i.e. its parametrization is a scaling of the arc length one).

45. Prove that if two geodesics are tangent to each other in some point (with the same
velocity), then they coincide.

46. Prove that a parallel transport of a vector v along a geodesic conserves the angle
between v and the curve (i.e., the velocity vector).

47. Describe geometrically the parallel transport for the Levi-Civita connection on a surface
in R3 (projection).

48. Prove that a curve on a surface in R3 is a geodesics iff its normal (the second derivative
for the natural parametrization = parametrization by the arc length) is orthogonal to
tangent plane at each point.

49. Find geodesics on the standard sphere S2 (without direct calculation).

50. Find geodesics on the standard sphere S2 (direct calculation).

51. Find geodesics on the pseudosphere = the upper half-plane with coordinates (x, y) and

the metric ds2 = dx2−dy2
x2

.

52. Prove that if two surfaces in R3 are tangent to each other (tangent planes coincide)
along a curve then two respective parallel transports along this curve coincide.

53. Find the rotation angle for the parallel transport of a vector along the circle being the
base of the standard round cone.

54. Find the rotation angle for the parallel transport of a vector along the circle being a
parallel of the standard sphere.
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55. Find the de Rham cohomology of an interval (a, b) and Eucledean space Rn.

56. Find the de Rham cohomology of the circle S1.

57. Find the de Rham cohomology of sphere S2.

58. Find the de Rham cohomology of the plane R2 without one point.

59. Find the de Rham cohomology of the plane R2 without two points.

60. Prove the Poincare lemma: any closed form on any manifold is locally exact.

61. Prove that the general Stokes formula implies Green’s formula from vector calculus.

62. Prove that the general Stokes formula implies divergence (Gauss–Ostrogradsky) theo-
rem from vector calculus,

63. Prove that the general Stokes formula implies the classical Stokes formula from vector
calculus:

64. Find the explicit form of the Maurer-Cartan form of G = SO(2).

65. Find G(N), N = {0, 1, 2, . . . }.

66. Prove that generally VectK(X) has no cancellation property.
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