ORTHOGONAL COMPLEMENTS AND
ENDOMORPHISMS OF HILBERT MODULES
AND C*-ELLIPTIC COMPLEXES!

E. V. TROITSKY

1. INTRODUCTION

In the present paper we discuss some properties of endomorphisms of C*-Hilbert mod-
ules and C*-elliptic complexes. The main results of this paper can be considered as an
attempt to answer the question: what kinds of good properties can one expect for an oper-
ator on a Hilbert module, which represents an element of a compact group? These results
are new, but we have to recall some first steps made by us before to make the present
paper self-contained.

In §2 we define the Lefschetz numbers “of the first type” of C*-elliptic complexes, taking
values in Ko(A) @ C, A being a complex C*-algebra with unity, and prove some properties
of them.

The averaging theorem 3.2 was discussed in brief in [15] and was used there for con-
structing an index theory for C*-elliptic operators. In this theorem we do not restrict the
operators to admit a conjugate, but after averaging they even become unitary. This raises
the following question: is the condition on an operator on a Hilbert module to represent
an element of a compact group so strong that it automatically has to admit a conjugate?

The example in section 4 gives a negative answer to this question. Also we get an exam-
ple of closed submodule in Hilbert module which has a complement but has no orthogonal
complement.

In §5 we define the Lefschetz numbers of the second type with values in HCy(A). We
prove that these numbers are connected via the Chern character in algebraic K-theory.
These results were discussed in [18] and we only recall them.

In §6 we get similar results for HCq;(A). We have to use in a crucial way the properties
of representations.
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2. PRELIMINARIES

We consider the Hilbert C*-module l3(P), where P is a projective module over C*-
algebra A with unity (see [10, 4, 13, 15]).

2.1. Lemma. Let P*(A) be the positive cone of the C*-algebra A. For every bounded
A-homomorphism F : I3(P) — I3(P) and every u € l3(P) we have

(Fu, Fu) < ||F|]* (u,u)

in PT(A).

Proof. For ¢ € PT(A) we have ¢ <||¢||1a. So if (u,u) = 14, then
(Fu, Fu) < | Full 1y < ] ().

Let now (u,u) be equal to a € P1(A), where « is an invertible element of A. We put
v = (\/5)_1 u. Then u = Jav and (v,v) =14. So

(Fo, Fo) < ||F|” (v, 0).

(Fu, Fu) = v/a (Fo, Fo) (Va)' < va [FII (v,0) (Va)" = |FI1 (u,u).

Elements u with invertible (u,u) are dense in [3(A) (this is a consequence of Lemma 2 of
[4]), so the continuity of the A-product gives the statement for [2(A). For l3(P) we have
to use the stabilization theorem [10]. W

Let us recall the basic ideas of [16, 17].

2.2. Definition. Let p : F — X be a G-C-bundle over a locally compact Hausdorff
G-space X. Let A(p*F,sp) be the well known complex of G-C-bundles (see [5]) with, in
general, non-compact support. Let a complex (E, «) represent an element a € Kg(X; A)
(see [15, sect. 1.3]); then (p*E,p*a) @ A(p*F,sp) has compact support and defines an
element of K (F; A). We get the Thom isomorphism of R(G)-modules

0 =l Ka(X; A) —» Kg(F; A).
If we pass to K by the Bott periodicity [15, 1.2.4], we can define

o K&(X;A) — KG(FA).
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2.3. Theorem. If X is separable and metrizable, then ¢ is an isomorphism.
With the help of this theorem we can define the Gysin homomorphism iy : Kq(TX; A) —
Kq(TY; A) and the topological index
t-indy = t-indgy 4 : Ka(TX;4) — K9(A)

in a way similar to the case A = C [5]. Here i : X — Y is a G-inclusion of smooth
manifolds and TX, TY are (co)tangent bundles.
We need the following property of the Gysin homomorphism.

2.4. Lemma. Leti:Z — X be a G-inclusion of smooth manifolds, N its normal bundle.
Then the homomorphism

(di)iy : Ka(TZ; A) — Ka(TZ; A)
is the multiplication by
A1 (N@eC) =) (-1)'[A(N e C)] € Ka(2),
where A' are the exterior powers, and we consider K¢(TZ; A) as a K(Z)-module in the
usual way.
2.5. Theorem. Let a-indD € K%(A) be the analytic index of a pseudo differential
equivariant C*-elliptic operator [15] , o(D) € Kq(TX; A) its symbol’s class. Then
t—indg;A o(D) = a-ind D.

Now for the completeness of this text we recall a generalization of the result of [1]. Let,
as above, GG be a compact Lie group, X a G-space, X7 the set of fixed points of g : X — X,
1 : X9 — X the inclusion.

2.6. Definition. Let E be a G-invariant A-complex on X, o(FE) its sequence of symbols
(see [15]) , u = [o(E)] € Kq(TX;A), indéA(u) € Ko(A) @ R(G). The Lefschetz number
of the first type is

Li(g, E) = indg 4(u)(g) € Ko(A) @ C.

2.7. Theorem. Using the notation as above we have

_— ixu(g)
Li(g,E) = (indj 4, ®1) </\_1(N9 @r C)(9) ) '

Also we need the following theorem from [12].

2.8. Theorem. Let M be a countably generated Hilbert A-module. Then we have a
GG-A-isomorphism

M= D, Homg(VmM) ®c Vr,

where {V:} is a complete family of irreducible unitary complex finite dimensional repre-
sentations of G, non-isomorphic to each other. In Homg(Vy, M) @c V; the algebra A acts
on the first factor and G on the second.
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3. AN AVERAGING THEOREM

Let us recall some facts about the integration of operator-valued functions (see [9,
§3]). Let X be a compact space, A be a C*-algebra, ¢ : C(X) — A be an involutive
homomorphism of algebras with unity, and F' : X — A be a continuous map, such that for
every € X the element F(x) commutes with the image of ¢. In this case the integral

/XF(:I;)dc,o c A

can be defined in the following way. Let X = U}, U; be an open covering and

7

Z ai(z)=1

=1

be a corresponding partition of unity. Let us choose the points &; € U; and compose the
integral sum

SFAT Ao A6H) = Y Fléelan).

If there is a limit of such integral sums then it is called the corresponding integral.
If X = G then it is natural to take ¢ equal to the Haar measure

o C(X) = C. wwzéwm@

(though this is only a positive linear map, not a *-homomorphism) and to define for a
norm-continuous Q) : G — L(H)

dg = lim i a;(g)dg.
[ @wis=1m3>aie) [ oo ds
If we have Q : G — PT(A) C L(H), then, since

/ ai(g)dg > 0,
G

we get

and

(the cone PT(A) is convex and closed). So we have proved the following lemma.
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3.1. Lemma. Let Q : G — PT(A) be a continuous function. Then for the integral in the
sense of [9] we have

/GQ(g) dg > 0. [ |

3.2. Theorem. Let GL be the group of all bounded A-linear automorphisms of [3(A)
(see [14]). Let g — T, (g € G,T, € GL) be a representation of G such that the map

G xl3(A) = 1(A), (g,u)— Tyu

is continuous. Then on l3(A) there is an A-product equivalent to the original one and such
that g — T, is unitary with respect to it.

Proof. Let ( , >/ be the original product. We have a continuous map
G— A x— <Txu,Txv>/

for every u and v from l2(A). We define the new product by

(u,v) :/ (Tpu, Tyv) de,
G

where the integral can be defined in the sense of either of the two definitions from [9,
p. 810] because the map is continuous with the respect to the norm of the C'*-algebra. It
is easy to see that this new product is a A-sesquilinear map l2(A4) x l2(A) - A. Lemma
3.1 shows that (u,u) > 0. Let us show that this map is continuous. Let us fix u € [2(A).
Then

x = Typ(u), G — 12(A)

is a continuous map defined on a compact space and so the set {T,(u)|z € G} is bounded.
Hence by the principle of uniform boundness [2, v. 2, p. 309]

(1) lim T, (v) =0
uniformly with respect to x € G. If u is fixed then
| Ty (w)|| < M, = const

and by (1)

I (o)l = | /G (T2 (), To(0) dof] < Mu -0l G- sup [ Te(v)] 0 (v = 0)

This gives the continuity at 0 and hence everywhere. For T,u = (ay(x),az(x),...) € l2(A)
the equation (u,u) = 0 takes the form

/G g a;(z)al(z)dz = 0.



o0 L. v, ThROILOKRY

Let A be realized as a subalgebra of the algebra of all bounded operators in the Hilbert
space L with inner product ( , ). For every p € L we have

0= ((/(;Zal(x)af(x) d:z;) P, p)

=1

:/(}(Zaz(l')aj(l')pv P) dw:/(}(Z(al(x)]% aj(m)p)L> dr

(cf. [9]). Hence a;(x) = 0 almost everywhere, and thus a;(z) = 0 for every x because of
the continuity, and T,u = 0. In particular, u = 0.
Since every T, is an automorphism, we have (cf. [9])

(Tyu, Tyv) = / (Tpyu, Tpyv) do = / (Tou, T.v) dz = (u,v).
G G

Now we will show the equivalence of the two norms and, in particular, the continuity of
the representation. There is a number N > 0 such that ||T,]|" < N for every « € G. So by

[9]

2
ol = bl = [ (Tous T dela < (sup IToal) < N2l

On the other hand, applying 2.1 and 3.1 we have

(u,u) = /G <Tg_1Tgu,Tg_1Tgu>/ dg < /GHTg_l 12 (Tyu, Tyu) dg
< / N (T,u,Tyu)" dg = N* / (Tyu, Tyu) dg = N* (u,u).
G G

Then
(el = Il (wsu) |4 < N (wu) |a = N?[[ul?. W

3.3. Remark. [3(P) is a direct summand in [3(A4), so 3.2 holds for [(P).

4. COMPLEMENTS AND ORTHOGONAL COMPLEMENTS
Let us recall some preliminary statements.

4.1. Lemma. 1. An A-linear operator F' : M — H, always admits a conjugate if
M € P(A) — the category of finitely generated projective modules.

2. Let 04 < o < 14. Then ||af < 1.

3. Let a >0, a=0p"1—a >0. Then 1 — 3 is an isomorphism.

Here the strong inequality means that the spectrum of the operator is bounded away
from zero.
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4.2. Example. Let A = C[0, 1], {e;} be the standard basis of H 4. Let

0 on [0,3] and [2, 1],

—
pilz) = {1 at xi:%<%+ii1>,
linear on [%,xl] and [z, iil]v
i=2.3,.... Let
AL 2 S

e
be an orthonormal system of vectors which generates Hy C Ha, Hy =2 H4. Then Hi &
span 4(e1) = H4. Indeed, all e; € Hy + span 4(e1), and if

r=(a1,02,...) € Hy Nspany(e),

r=(a1,0,...)= Zﬁlhl,
1=2

then all 3; = 0, + = 0. However the module H; does not have an orthogonal complement.

More precisely we have the following situation. Let y = E;il aje; be in Hi. Then

<E;o:10zjej,hi> =0fori=2,3,...,800; + 10, =0 (i =2,3,...), and a; = —a19,

hence
Yy = (041, —1P2, —01¥L3, ... )

This is possible if and only if the function «; vanishes at 0: a4(0) = 0. If Hy @HJ‘ = H4,
then for some oy we have ¢; =y + Eloiz Bih;. In particular the series Eloiz (:; converges
and

But ||fi]|a — 0, so for
Bipi
¥ = _—
2 W

we get v(0) = 0, as well as for a;. We come to a contradiction.
Let us investigate the involution J which determines a representation of Zs:

x ifl’EHl,
J(x) = {

—x if x € span, ey,
This operator does not admit a conjugate. Indeed, let J* exist. Then (J*)2 = J?" =1d,
so J* is also an involution.
J'r=2 & (Jz,y)=(z,y) Yy & (z,Jy)=(z,y)
& (2,(J-1y)=0 Vy <azllm(J-1) <&
& xlspany(er),

Yy <



S L. v, ThROILOKRY

and J*r = —r &« 1l H;. But H; has no orthogonal complement and so the involution
J* can not be defined. Nevertheless for the A-product averaged by the action of Z,

(z,9), = 1/2((z,y) + (Jz, Jy))

we get if @ € Hy,y € spany(er) :  (x,y), = 1/2((z,y) + (x,—y)) = 0, so the + and —
subspaces of the involution are orthogonal to each other, and J(*z) =J.

Let us recall the definition of A-Fredholm operator [11, 13]. The theorem which will
be proved is the crucial one for the possibility of construction of Sobolev chains in the
C'*-case.

4.3. Definition. A bounded A-operator F' : H4 — H 4 admitting a conjugate is called
Fredholm, if there exist decompositions of the domain of definition H4 = M; & N; and
the range Hy = M, & N3 where My, My, Ny, Ny are closed A-modules, N, Ny have a

finite number of generators, and such that the operator F' has in these decompositions the

_(F 0
F‘(o F2>’

where F| : My — M> is an isomorphism.

following form

4.4. Lemma. Let J: Hy — H, be a self adjoint injection. Then J is an isomorphism.
Here injection means an injective A-homomorphism with closed range.

Proof. Let us consider J; = J : Hqy — J(Ha). It is an isomorphism of Hilbert mod-

ules admitting a conjugate Ji = J*[; . = J|yp,. Let Jo = J(Jl*Jl)_l/z; then

(Jow, Joy) = (x,y) for every x,y € Hy. We have Jy(Ha) = J(Ha) and J3J, = 1.
Let z € H4 be an arbitrary element. Then

z=Jy iz 4+ (z— JoJ3z), Jodiz € Jy(Ha)

and

T3z = JJyz)=J5z— (Jy o) 5z = Jyz— J3z =0,
so (z — JaJ5z) € Ker Jy, but

re€KerJ; & Vy: (Jjr,y)=0 &
& Vy: (x,Jy)=0 & e Jh(Ha)t

Hence JyJ5z € Jo(Ha), (2 — JoJ5) € JQ(HA)J_7 and
Hy= Jo(Ha) @D Jo(Ha)" = J(HA) P J(Ha)™ .
So, if J(H4)*+ = 0, then J is an isomorphism. Let x € J(Ha)L, then € J*(H4)t, so

Vy: (x,J*y)=0o0rVy: (Jr,y) =0, and « € Ker.J. But J is an injection, and so,
x=0. 1
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4.5. Lemma. Let F': M — H 4 be an injection admitting a conjugate. Then

FO1 @ PO = Ha

Proof. We can assume by the stabilization theorem that M = HY = H,. Then F*F :
HY — H is a self adjoint operator. Let ||z|| = 1, then

|Fa* = || (Fa, Fa) || > ¢*
by injectivity and
|F*Foll = |F*Fal el > | (F*Fa,a) || = | (Fe, Fa) || > ¢

So F*F : H — H} is a self adjoint injection and it is an isomorphism by the previous
lemma. Moreover, F*F > 0, and so, (F*F)_1/2 can be defined. Hence U = F(F*F)_1/2 :
M — H 4 (which is an injection with U(M) = F(M)) is well defined. We have U*U = Id .
Let z € H4 be an arbitrary element. Then

z=UU%24(z—-UU"z2), U(z=UU2)=U"2—(UU)U"'2=U"2-U"2=0.
Since y € KerU* & (U*y,z)=0Vex & (y,Uz)=0V2 <& yLlImU we get
U'UzeImU=1ImF, (z—UU*2)¢€ (ImU)".

The proof is finished because z is an arbitrary element. W

4.6. Lemma. Let Hy =M & N, p: Hy — M be a projection, N be a finitely generated
projective module. Then M @ M+ = H, if and only if p admits a conjugate.

Proof. If there exists p*, then there exists (1 —p)* =1 — p*, so by [11] Ker(1 — p) = M is
the kernel of a self adjoint projection.

To prove the converse statement let us start from the case where N is a free module
and let us prove first that H4 = N+ + M+, By the Kasparov stabilization theorem we
can assume that

N =span, (e1,...,¢,), Nt =span, (eni1,€nt2,...).
Let ¢; be the image of e; by the projection of N on M*:

el:fl—l_glv"'ven:fn—l_gnv fZEMngEMJ_

This projection is an isomorphism of A-modules N 2 ML, so the elements ¢1,...,gn
are free generators and (gr, gr) > 04. Hence, if

o)
fr = Zf,’cei, then e — f,fek = Zf,’cei + .
k=1 ik
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On the other hand

1= (e ex) = (fro i) + (g0, 96) . 1= (FOE) = (grogr) > 0.

Then by 2.1 the element 1 — fF is invertible in A,

1 4
er = - Zf,’cei—l—gk e NP+ Mt (k=1,...,n),
L—fi ik

so, Nt + M+ = Hy. Letz € N*NM*L. Everyy € Hy = M@ N has the form y = m+n,
so (z,y) = (x,m)+(x,n) = 0, in particular, (z,z) = 0 and = 0. Hence, H4 = Nt@ ML

Let us consider
1 on N1,
q _—
0 on M™t.

It is a bounded projection because H 4 = NLaM~L. Let x+y € MEN, x14y; € Nigm-+.
Then
(plx +y),x1 +y1) = (z,21 + 1) = (z,21),

(+y,q(xr +y1)) = (v +y,21) = (z,21) .

Hence, there exists p* = ¢.

To prove the general case let Hi=H, @ N with N @ N a free module. Then, by the

previous case, -
MEPM=Hiy.
M@(ML@N) :HA@N,

M@ML:HA.I

4.7. Theorem. In the decomposition in the definition of A-Fredholm operator we can
always assume My and M, admitting an orthogonal complement. More precisely, there
exists a decomposition for F

F 0
3 :HA:VO@W0—>V1@W1:HA7
0 Fy

such that V- @ Vo=Ha, Vit @ Vi = Ha, or (by the previous lemma it is just the same)
such that the projections

poiVo@Wg%Vh plivl@W1—>V1

admit conjugates.

Proof. Let Wy = Ny, Vo = W4-. This orthogonal complement exists by [4], and Flya is
an isomorphism. Indeed, if z,, € Wb, then let z,, = 27+, 2 € My, 2% € Wo, ||z, = 1.
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Let us assume that |[|[Fa,|| — 0. Then |Fz] + Fa|| — 0, and, since Fap € V4, Fa] €
Wi, Vi & Wy = H 4, then this means that | Fa}|| — 0 and || Fz}|| — 0, and, since F} is an

isomorphism, then ||z}|| — 0. If ay,...,as are the generators of Wy = Np, then
0= <xn7aj> = <$711,a]‘> + <xgvaj>7
{23, ai) || = |l (@1 a) | < [le7 || lajll =0 (n = o0)
for any j = 1,...,s. Hence, since 2] € N, we have 2 -+ 0 (n — o) and z, = 27 42} —
0, but this contradicts the equality ||x,|| = 1. This contradiction shows that F|WOJ_ is an
isomorphism.

Let Vi3 = F(Vh). Since Wy = Ny, we can assume that Wi = Ny. Indeed, any y € Hx
has the form y = m; + ny = F(mo) + n1, where my € My, ny € Ny, mg € M. On the
other hand, mg = vy + ng, where vg € Vy, ng € Wy = Ng, and

y = F(vo +no) +n1 = Flvo) + (F(no) +n1) € Vi + Ny.

Hence, H4 =V + W7,
Let y € ViNWy = V1N Ny, sothat ny =y = F(vg), n1 € N1, vg € Vp. Let us decompose
vo + ng, where mg € My, ng € Ng. Then

n, = F(mo) —|— F(TLO),
F(mo):nl—F(no), F(mo) EMl, nl—F(no)ENl.
Hence F(mg) = 0, ny — F(ng) = 0, and since F : My = M, then mo = 0. We have
vg € Vo = NOJ‘ and hence,
0 = (vo,n0) = {(mo + no,no) = (no,no), no=0.

So, vo =mg +ng =0,y = F(vg) =0. Hence Vi N Wy =0 and Hy = Vi & W7,
By 4.5 V; has an orthogonal complement V1, Vi @ Vit = H4, and this completes the
proof. B

4.8. Remark. If we do not restrict the operator F' to admit a conjugate, we can assert
that there exists a decomposition

F:N§ @& Ny— M & L,,

where L, = spany(e,...,€e,), but M7 may have no orthogonal complement. This result
was proved in [6].

5. LEFSCHETZ NUMBERS WITH VALUES IN HCy(A)

5.1. Definition. Let {e1,e2,...} be an A-orthobasis of H4 = l3(A) (the Hilbert module
over A) with A-inner product ( , ). Let S € End}y H4 (the A-linear endomorphisms of
H 4 admitting an adjoint) and S(e;) = 0 (¢ > k). We define the trace of S by

k

H(S, {ei}, k) = Zf Seivei)) =) f(S]),

=1

where f: A — A/[A, A] = HCy(A), HS}H is the matrix of S with respect to {¢;}, S} €A
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5.2. Lemma. t(S5,{e;}, k) =¢(S,{ei}, 1) :=t(5,{e;}) for | > k.
The proofs of this lemma and the other statements of this Section can be found in [18].

5.3. Lemma. Let S, {e;}, k be as in 5.1 and {h;} a new A-basis of H, (in general
non-orthogonal). Then the series

> F((Sh))

converges to t(S,{e;}), where (Sy)! are the matrix elements of S with respect to {h;}.
Let us note that a basis of H 4 is a system of elements {h;}, such that h; = Be;, where

B € GL* (automorphisms admitting a conjugate). The matrix of S with respect to the {h;}

is the matrix of B~1S B with the respect to {¢;}, i.e., (Sh)§ = (B_153)§ = <B_1SBei, ej>.

So we can give instead of 5.1 the following correct definition.

5.4. Definition. Let S € End’ H4, M and N Hilbert submodules of H4, N finitely
generated, Hq4 = M & N, S|y = 0. For an arbitrary basis {e;} we define

1) = (S0

5.5. Lemma. Let M, N, S be as in 5.4, and N be a countably generated Hilbert A-
module, H 4 :HA@N%HA,

. S 0 - . - .
S:(O 0>:HA@N—>HA@N.
Then t(S) = t(g)
5.6. Lemma. Let M, N, S be asin 5.4, M= Hy, N =N @& N, S| =0. Then

t(S) = t(pSp),

where p : M & N&N > Ma&Nisa projection, and the sum on the right is in the space
M @& N = H4. Let us notice, that if we denote by

g:M@&N =M, p:N—=N

the projections, then they admit conjugates. Hence, the projection p = q+p1(1—q) admits
one, t0o.

5.7. Corollary. If in 55 M & N is orthogonal to N, and {h;} is an A-orthobasis of
M @ N, then

t(S) = Zf((Shi,hi>). u
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Definition. Let F': Hy — H4 be an A-Fredholm operator (admitting an adjoint),

F 0
(01 F2>:HA:MO@NO—>M1@N1:HA (D)

a corresponding decomposition, restricted to satisfy the condition as in 4.7 (we always will
assume this without specification). Let Sg and S be operators from End’y H 4, such that
the diagram

HAL HA

| I

HA L> HA.

commutes. Let

N 0 on My, N 0 on M,
So = S; =
So on Ny, S, on Nj.

Let us define N N
L(F,5,D) = t(So) — t(S51).
5.9. Lemma. Let
HA:MO@N()%Ml@leﬂAv (D)
HA:Mo@NoﬁMl@leﬂA (ﬁ)

then

L(F,S,D) = L(F, S, D).

5.10. Lemma. Let
Hi=(Mo® No)® Ko — (M1 N1) S Ky =Ha, (Dq)
Hy=My® (No® Ko) =My & (N1 ®Ky)=Hy (D»)
be two decompositions for F. Then L(F,S, D)= L(F, S, D3).
5.11. Lemma. Let
HA:Mo@NoéMl@leﬂA (D)
and B B B B B
HA:Mo@NoéMl@leﬂA (D)

be two decompositions for F. Then L(F,S,D) = L(F,S,D). So L does not depend on D
and we denote it by L(F,S).

5.12. Remark. By the stabilization theorem and Lemma 5.5, we can define L(F,S) for
any countably generated Hilbert A-module instead of H 4.
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5.13. Definition. Let T'= {T;} be an endomorphism of an A-elliptic complex E:

0 — T(E) -2 T(E) —

| Ty LT
0 — [(E) & T(E) —

Ti_|_1di =d;T;, T;€ Endz P(El)
Assume the following

5.14. Condition. Sobolev products in I'(E) can be chosen in such a way that
Ti:d; = d;Tit.
We take E., = ©FE2, Eoq = GE2i41,
F=d+4d :T(E.) = T'(E.).
Then F is an A-Fredholm operator and the diagram stated below commutes, where

So = BT5;, S1=BT%41.

[(E.,) —— T(E.q)

| |

[(Eew) ——— T(E,q).
We define the Lefschetz number of the second type as

Lo(E,T,m) = L(F, S) € HCO(A),

where m denotes the dependence on inner products (via d*).
5.15. Lemma. Let T =T,, g € G as in §2. Then the condition 5.14 is fulfilled.
5.16. Theorem. IfT =T,, g € G, then

+ 0
Lo(E.T;,mqg) = Chy(L1(g, E)),
where Ch is the Chern character
Chg : Ko(A) — HCo(A)

(see [3, 7, 8]), and
Chola ® z) = ChY(a)s,  z€C.
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In particular, Ly does not depend on mg.
Proof. We have
Li(g, E) = indg 4([o(E)])(9) = indg 4(F)(g)-
Let
M, © No — My & Ny (D)

be a decomposition for F. Then by 2.8 and [15]

K L
No=BVvior, NM=PwWoaq,

where Vi and W are C-vector spaces of irreducible representations of GG, Py and (}; are
G-trivial projective finitely generated A-modules. Then (representations are unitary)

K

indg 4 (F) =Y [P @ x(Vi) — ZQI @ x(Wi)
k=1 =1

and

K

L
(2) Li(g,E) = Y [P4] @ Trace(g|Vi) — > _[Qi] @ Trace(g|1W7).
k=1 =1

The end of the proof see in [18]. W
6. LEFSCHETZ NUMBERS WITH VALUES IN HCy(A)

Let W*A be the universal enveloping von Neumann algebra of the algebra A with the
norm topology. Let U be a unitary operator in the Hilbert module A™. Then

g U= [ eare)

where P(¢p) is the projection valued measure valued in the space of matrices M (n, W*A),
and the integral converges with respect to the norm. Let us associate with the integral

SuIn ‘
> € P(Ey)

k
the following class of the cyclic homology HCq(M(n, W*A)):

Y P(Ey)@...@ P(Ey) - e

Passing to the limit we get the following element
U= / (9 d(P @ ... 0 P)g) € HCou(M(n,W* A)).
S1

Then we define )
TU) =T} TU € HCy(W*A).
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6.1. Lemma. Let J: M = A™ — N = A" be an isomorphism, Uy : M — M, Uy :
N — N be A-unitary operators and JUy = UnJ. Then

T(Un)=T(Un).

Proof. If
Uu = [ apie)
Sl
then
Uy =JUyJ ' = / e'? dJPJ ().
Sl

To verify the equality T(Upr) = T(Uy) it is sufficient to verify that

Tr"

*

Z P(Ey)@...® P(Ey) - em] _

_ n
= Tr,

Y JP(EWNT '@ ... @ JP(Ey)J €| € HCy(W* A),
k

but this follows from well-definedness of the Chern character Chgl : Ko(B) - HCy(B)
(see [3, 8]). A

Let now U be equal to Uy, i.e. an operator representing g € GG. Then (3) turns to be
the sum associated with the decomposition from 2.8 and [15]

M
A" =P QLo Vi,
k=1

where V3 22 CY | and Qy are projective A-modules of finite type. Then

M M M Ly N
U, (Z xk®vk> = Z$k®u§Uk :ZZ J?k@ewl U]lcfl?

k=1 k=1 k=1 1=1
where fi1,..., fr, 1s the diagonalizing basis for u';; vE = Y v,lcfl. Then we can define
M Ly
(4) T(Ug) =Y Y ChY[Pi]- Trace(up) € HCy(A).
k=1 1=1

We have T(U,) = t4(7(Uy)), where i : A — W*A.
A similar technique can be developed for a projective module N instead of A™. For this
purpose we take N = ¢(A"),

UGl:A"ZNPG(1—-—q)A" > N (1 —q)A" = A",

TU = / P d(qPq® ... 2 qPq)(p).
Sl

The well-definedness is an immediate consequence of Lemma 6.1.
Let us consider a G-invariant A-elliptic complex (E,d), and let the Sobolev A-products
be chosen invariant, so that T, = U, are unitary operators (see §3).



CT-RLIPF 11O COMPLEARD i

6.2. Lemma. We can choose a decomposition for the A-Fredholm operator
F=d+4+d :T(E.) — ['(Eu),

F:Mo@NoéMl@Nl, FlMong,

such that N

No = @ilNai, Nai CT'(Eqi),

Ny = ®iNzit1, Naiy1 CT(Ezit1),
where N, are projective invariant modules.
Proof. Let us assume that the complex consists of operators of the degree m, so F =
d + d* is an A-Fredholm operator in the spaces H™(E.,) — HY(E,4). We can choose
the basis in H™(E,,) (or the decomposition into modules P; in [3(P)) in such a way that
€mst+j € I'(E2j), where Eg, Es,...,Esj,..., Esy, are all non-zero terms of the complex,

s€eN, j=0,...,m (and in a similar way for P;). As usual, without loss of generality we
can assume that

Ny = span4(€1,...,€n,), Mo =span(€ngt1sEnogt2,--- ),

and M; = F(Mpy) has in H°(E,q) the A-orthogonal complement AMi-. Then for every

v € M,y € No
(5) <$,Fy> = <Fl’,y>0,

where the first brackets mean the pairing of a functional and an element. So, F(No) C Mt
and taking Ny = Mf‘, we get a decomposition F': My & Ng — M7 & Ny.
Let
y=yr+ys+- - +y2m+1 € N1 C HO(Eod)a Y2541 € HO(E21+1),

and

r=x0+ 22+ -+ Tam € Mo C H"(Eep), w25 € H"(Ey;).
Then (Fx,y), = 0, where

Fa = d*l'o + Z;r;l(dl'zi_z + d*l'zl) + dl’zm €
e 0 @ O H(Esiqa) ® 0.

Since (E,d) is a complex, d* = 0 and
(du,d"v) = <d2u,v> =0,

SO
<y2]+1,d$2]>:0, <y2]+1,d*$2]—|—2>:0 (]:0,1,,m)
(y2j41,dx) =0, (y2j41,d"x) = 0.

Hence €941 € F(MO)J' = M = Ny, and

Ny = @i(Nl NT(Eziq1)) = BiNait1.
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6.3. Definition. The Lefschetz number Lo; we define as
Ly(E,Ugyma) =Y _(=1)' 7(Uy|Ni) € HCy(A),

where m¢ denotes the dependence on inner products (via d*).

Remark. For more general situations we hope to use T' instead of 7.

6.4. Lemma. The definition of Lo; is correct, i.e. this number does not depend on the
choice of decompositions in Lemma 6.2.

Proof. For any two decompositions we can by use of projection (as in [13, 15]) replace
Ny by a module inside span 4(e1,...,ey) for a sufficiently great n (we use the notation of
Lemma 6.2). By 6.1 7(U,|N;) does not change under this replacement. So we can assume
that we have to compare the decomposition as in 6.2 and the decomposition

FiM()@j\ifo —>M1 @j\ifl,
ﬁo = @i Na;, Nai C Noy C T(Ey;),
ﬁl = @iNzH-l, N2i+1 C I'(Ey;).

Hence by (5), Nojy1 C Nojyq. Let K; = (NZ)JJ\‘fl Then F : K3; 2 Ky;41 and by Lemma
6.1 we get 7(Uy|K2;) = 7(Uy|K2i41). Hence

D (UGN =Y (1) (1(Uy|N) + 7(Uy|K)) =

?

DI CHRGUARANE

6.5. Theorem. Let dhgl(a © z) = ChY,(a) - 2, where = € C. Then

~ 0
LZI(Engva) = ChZI(Ll(ng))v

in particular, Lo; does not depend on mg.

Proof. We get the statement immediately from (2) and (4). W
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