ORTHOGONAL COMPLEMENTS AND ENDOMORPHISMS OF HILBERT MODULES AND C^{*}-ELLIPTIC COMPLEXES ${ }^{1}$

E. V. Troitsky

1. Introduction

In the present paper we discuss some properties of endomorphisms of C^{*}-Hilbert modules and C^{*}-elliptic complexes. The main results of this paper can be considered as an attempt to answer the question: what kinds of good properties can one expect for an operator on a Hilbert module, which represents an element of a compact group? These results are new, but we have to recall some first steps made by us before to make the present paper self-contained.

In $\S 2$ we define the Lefschetz numbers "of the first type" of C^{*}-elliptic complexes, taking values in $K_{0}(A) \otimes \mathbb{C}, A$ being a complex C^{*}-algebra with unity, and prove some properties of them.

The averaging theorem 3.2 was discussed in brief in [15] and was used there for constructing an index theory for C^{*}-elliptic operators. In this theorem we do not restrict the operators to admit a conjugate, but after averaging they even become unitary. This raises the following question: is the condition on an operator on a Hilbert module to represent an element of a compact group so strong that it automatically has to admit a conjugate?

The example in section 4 gives a negative answer to this question. Also we get an example of closed submodule in Hilbert module which has a complement but has no orthogonal complement.

In $\S 5$ we define the Lefschetz numbers of the second type with values in $H C_{0}(A)$. We prove that these numbers are connected via the Chern character in algebraic K-theory. These results were discussed in [18] and we only recall them.

In $\S 6$ we get similar results for $H C_{2 l}(A)$. We have to use in a crucial way the properties of representations.

Acknowledgement. I am indebted to A. A. Irmatov, V. M. Manuilov, A. S. Mishchenko and Yu. P. Solovyov for helpful discussions. This work was partially supported by the Russian Foundation for Fundamental Research Grant No. 94-01-00108-a and the International Science Foundation. I am grateful to the organizers of the Meeting "Novikov conjectures, index theorems and rigidity" at Oberwolfach for an extremely nice and helpful

[^0]week in September 1993, especially to J. Rosenberg for very useful help in the preparation of the final form of the present paper.

2. Preliminaries

We consider the Hilbert C^{*}-module $l_{2}(P)$, where P is a projective module over C^{*} algebra A with unity (see $[10,4,13,15]$).
2.1. Lemma. Let $P^{+}(A)$ be the positive cone of the C^{*}-algebra A. For every bounded A-homomorphism $F: l_{2}(P) \rightarrow l_{2}(P)$ and every $u \in l_{2}(P)$ we have

$$
\langle F u, F u\rangle \leqslant\|F\|^{2}\langle u, u\rangle
$$

in $P^{+}(A)$.
Proof. For $c \in P^{+}(A)$ we have $c \leqslant\|c\| 1_{A}$. So if $\langle u, u\rangle=1_{A}$, then

$$
\langle F u, F u\rangle \leqslant\|F u\|^{2} 1_{A} \leqslant\|F\|^{2}\langle u, u\rangle .
$$

Let now $\langle u, u\rangle$ be equal to $\alpha \in P^{+}(A)$, where α is an invertible element of A. We put $v=(\sqrt{\alpha})^{-1} u$. Then $u=\sqrt{\alpha} v$ and $\langle v, v\rangle=1_{A}$. So

$$
\begin{gathered}
\langle F v, F v\rangle \leqslant\|F\|^{2}\langle v, v\rangle \\
\langle F u, F u\rangle=\sqrt{\alpha}\langle F v, F v\rangle(\sqrt{\alpha})^{*} \leqslant \sqrt{\alpha}\|F\|^{2}\langle v, v\rangle(\sqrt{\alpha})^{*}=\|F\|^{2}\langle u, u\rangle .
\end{gathered}
$$

Elements u with invertible $\langle u, u\rangle$ are dense in $l_{2}(A)$ (this is a consequence of Lemma 2 of [4]), so the continuity of the A-product gives the statement for $l_{2}(A)$. For $l_{2}(P)$ we have to use the stabilization theorem [10].

Let us recall the basic ideas of $[16,17]$.
2.2. Definition. Let $p: F \rightarrow X$ be a G - \mathbb{C}-bundle over a locally compact Hausdorff G-space X. Let $\Lambda\left(p^{*} F, s_{F}\right)$ be the well known complex of G - \mathbb{C}-bundles (see [5]) with, in general, non-compact support. Let a complex (E, α) represent an element $a \in K_{G}(X ; A)$ (see $\left[15\right.$, sect. 1.3]); then $\left(p^{*} E, p^{*} \alpha\right) \otimes \Lambda\left(p^{*} F, s_{F}\right)$ has compact support and defines an element of $K_{G}(F ; A)$. We get the Thom isomorphism of $R(G)$-modules

$$
\varphi=\varphi_{A}^{F}: K_{G}(X ; A) \rightarrow K_{G}(F ; A)
$$

If we pass to K_{G}^{1} by the Bott periodicity [15, 1.2.4], we can define

$$
\varphi: K_{G}^{*}(X ; A) \rightarrow K_{G}^{*}(F ; A) .
$$

2.3. Theorem. If X is separable and metrizable, then φ is an isomorphism.

With the help of this theorem we can define the Gysin homomorphism $i_{!}: K_{G}(T X ; A) \rightarrow$ $K_{G}(T Y ; A)$ and the topological index

$$
\mathrm{t}-\mathrm{ind}_{G}^{X}={\mathrm{t}-\mathrm{ind}_{G, A}}_{X}^{X}: K_{G}(T X ; A) \rightarrow K^{G}(A)
$$

in a way similar to the case $A=\mathbb{C}[5]$. Here $i: X \rightarrow Y$ is a G-inclusion of smooth manifolds and $T X, T Y$ are (co)tangent bundles.

We need the following property of the Gysin homomorphism.
2.4. Lemma. Let $i: Z \rightarrow X$ be a G-inclusion of smooth manifolds, N its normal bundle. Then the homomorphism

$$
(d i)^{*} i_{!}: K_{G}(T Z ; A) \rightarrow K_{G}(T Z ; A)
$$

is the multiplication by

$$
\left[\lambda_{-1}\left(N \otimes_{\mathbb{R}} \mathbb{C}\right)\right]=\sum(-1)^{i}\left[\Lambda^{i}\left(N \otimes_{\mathbb{R}} \mathbb{C}\right)\right] \in K_{G}(Z)
$$

where Λ^{i} are the exterior powers, and we consider $K_{G}(T Z ; A)$ as a $K_{G}(Z)$-module in the usual way.
2.5. Theorem. Let a-ind $D \in K^{G}(A)$ be the analytic index of a pseudo differential equivariant C^{*}-elliptic operator $[15], \sigma(D) \in K_{G}(T X ; A)$ its symbol's class. Then

$$
\operatorname{t-ind}_{G, A}^{X} \sigma(D)=\text { a-ind } D .
$$

Now for the completeness of this text we recall a generalization of the result of [1]. Let, as above, G be a compact Lie group, X a G-space, X^{g} the set of fixed points of $g: X \rightarrow X$, $i: X^{g} \rightarrow X$ the inclusion.
2.6. Definition. Let E be a G-invariant A-complex on $X, \sigma(E)$ its sequence of symbols (see $[15]), u=[\sigma(E)] \in K_{G}(T X ; A), \operatorname{ind}_{G, A}^{X}(u) \in K_{0}(A) \otimes R(G)$. The Lefschetz number of the first type is

$$
L_{1}(g, E)=\operatorname{ind}_{G, A}^{X}(u)(g) \in K_{0}(A) \otimes \mathbb{C} .
$$

2.7. Theorem. Using the notation as above we have

$$
L_{1}(g, E)=\left(\operatorname{ind}_{1, A}^{X^{g}} \otimes 1\right)\left(\frac{i_{*} u(g)}{\lambda_{-1}\left(N^{g} \otimes_{\mathbb{R}} \mathbb{C}\right)(g)}\right)
$$

Also we need the following theorem from [12].
2.8. Theorem. Let M be a countably generated Hilbert A-module. Then we have a G-A-isomorphism

$$
M \cong \oplus_{\pi} \operatorname{Hom}_{G}\left(V_{\pi}, M\right) \otimes_{\mathbb{C}} V_{\pi}
$$

where $\left\{V_{\pi}\right\}$ is a complete family of irreducible unitary complex finite dimensional representations of G, non-isomorphic to each other. $\operatorname{In~}_{\operatorname{Hom}}^{G}\left(V_{\pi}, M\right) \otimes \mathbb{C} V_{\pi}$ the algebra A acts on the first factor and G on the second.

3. An averaging theorem

Let us recall some facts about the integration of operator-valued functions (see [9, §3]). Let X be a compact space, A be a C^{*}-algebra, $\varphi: C(X) \rightarrow A$ be an involutive homomorphism of algebras with unity, and $F: X \rightarrow A$ be a continuous map, such that for every $x \in X$ the element $F(x)$ commutes with the image of φ. In this case the integral

$$
\int_{X} F(x) d \varphi \quad \in \quad A
$$

can be defined in the following way. Let $X=\cup_{i=1}^{n} U_{i}$ be an open covering and

$$
\sum_{i=1}^{n} \alpha_{i}(x)=1
$$

be a corresponding partition of unity. Let us choose the points $\xi_{i} \in U_{i}$ and compose the integral sum

$$
\sum\left(F,\left\{U_{i}\right\},\left\{\alpha_{i}\right\},\left\{\xi_{i}\right\}\right)=\sum_{i=1}^{n} F\left(\xi_{i}\right) \varphi\left(\alpha_{i}\right)
$$

If there is a limit of such integral sums then it is called the corresponding integral.
If $X=G$ then it is natural to take φ equal to the Haar measure

$$
\varphi: C(X) \rightarrow \mathbb{C}, \quad \varphi(\alpha)=\int_{G} \alpha(g) d g
$$

(though this is only a positive linear map, not a $*$-homomorphism) and to define for a norm-continuous $Q: G \rightarrow L(H)$

$$
\int_{G} Q(g) d g=\lim \sum_{i} Q\left(\xi_{i}\right) \int_{G} \alpha_{i}(g) d g
$$

If we have $Q: G \rightarrow P^{+}(A) \subset L(H)$, then, since

$$
\int_{G} \alpha_{i}(g) d g \geqslant 0
$$

we get

$$
\sum_{i} Q\left(\xi_{i}\right) \cdot \int_{G} \alpha_{i}(g) d g \quad \in \quad P^{+}(A)
$$

and

$$
\int_{G} Q(g) d g \quad \in \quad P^{+}(A)
$$

(the cone $P^{+}(A)$ is convex and closed). So we have proved the following lemma.
3.1. Lemma. Let $Q: G \rightarrow P^{+}(A)$ be a continuous function. Then for the integral in the sense of [9] we have

$$
\int_{G} Q(g) d g \geqslant 0
$$

3.2. Theorem. Let GL be the group of all bounded A-linear automorphisms of $l_{2}(A)$ (see [14]). Let $g \mapsto T_{g} \quad\left(g \in G, T_{g} \in \mathrm{GL}\right)$ be a representation of G such that the map

$$
G \times l_{2}(A) \rightarrow l_{2}(A), \quad(g, u) \mapsto T_{g} u
$$

is continuous. Then on $l_{2}(A)$ there is an A-product equivalent to the original one and such that $g \mapsto T_{g}$ is unitary with respect to it.

Proof. Let \langle,\rangle^{\prime} be the original product. We have a continuous map

$$
G \rightarrow A, \quad x \mapsto\left\langle T_{x} u, T_{x} v\right\rangle^{\prime}
$$

for every u and v from $l_{2}(A)$. We define the new product by

$$
\langle u, v\rangle=\int_{G}\left\langle T_{x} u, T_{x} v\right\rangle^{\prime} d x
$$

where the integral can be defined in the sense of either of the two definitions from [9, p. 810] because the map is continuous with the respect to the norm of the C^{*}-algebra. It is easy to see that this new product is a A-sesquilinear map $l_{2}(A) \times l_{2}(A) \rightarrow A$. Lemma 3.1 shows that $\langle u, u\rangle \geqslant 0$. Let us show that this map is continuous. Let us fix $u \in l_{2}(A)$. Then

$$
x \mapsto T_{x}(u), \quad G \rightarrow l_{2}(A)
$$

is a continuous map defined on a compact space and so the set $\left\{T_{x}(u) \mid x \in G\right\}$ is bounded. Hence by the principle of uniform boundness [2, v. 2, p. 309]

$$
\begin{equation*}
\lim _{v \rightarrow 0} T_{x}(v)=0 \tag{1}
\end{equation*}
$$

uniformly with respect to $x \in G$. If u is fixed then

$$
\left\|T_{x}(u)\right\| \leq M_{u}=\mathrm{const}
$$

and by (1)

$$
\|\langle u, v\rangle\|=\left\|\int_{G}\left\langle T_{x}(u), T_{x}(v)\right\rangle^{\prime} d x\right\| \leq M_{u} \cdot \operatorname{vol} G \cdot \sup _{x \in G}\left\|T_{x}(v)\right\| \rightarrow 0 \quad(v \rightarrow 0) .
$$

This gives the continuity at 0 and hence everywhere. For $T_{x} u=\left(a_{1}(x), a_{2}(x), \ldots\right) \in l_{2}(A)$ the equation $\langle u, u\rangle=0$ takes the form

$$
\int_{G} \sum_{i=1}^{\infty} a_{i}(x) a_{i}^{*}(x) d x=0
$$

Let A be realized as a subalgebra of the algebra of all bounded operators in the Hilbert space L with inner product $(,)_{L}$. For every $p \in L$ we have

$$
\begin{aligned}
0 & =\left(\left(\int_{G} \sum_{i=1}^{\infty} a_{i}(x) a_{i}^{*}(x) d x\right) p, p\right)_{L} \\
& =\int_{G}\left(\sum_{i=1}^{\infty} a_{i}(x) a_{i}^{*}(x) p, p\right)_{L} d x=\int_{G}\left(\sum_{i=1}^{\infty}\left(a_{i}(x) p, a_{i}^{*}(x) p\right)_{L}\right) d x
\end{aligned}
$$

(cf. [9]). Hence $a_{i}(x)=0$ almost everywhere, and thus $a_{i}(x)=0$ for every x because of the continuity, and $T_{x} u=0$. In particular, $u=0$.

Since every T_{y} is an automorphism, we have (cf. [9])

$$
\left\langle T_{y} u, T_{y} v\right\rangle=\int_{G}\left\langle T_{x y} u, T_{x y} v\right\rangle^{\prime} d x=\int_{G}\left\langle T_{z} u, T_{z} v\right\rangle^{\prime} d z=\langle u, v\rangle .
$$

Now we will show the equivalence of the two norms and, in particular, the continuity of the representation. There is a number $N>0$ such that $\left\|T_{x}\right\|^{\prime} \leq N$ for every $x \in G$. So by [9]

$$
\|u\|^{2}=\|\langle u, u\rangle\|_{A}=\left\|\int_{G}\left\langle T_{x} u, T_{x} u\right\rangle^{\prime} d x\right\|_{A} \leq\left(\sup _{x \in G}\left\|T_{x} u\right\|^{\prime}\right)^{2} \leq N^{2}\left(\|u\|^{\prime}\right)^{2}
$$

On the other hand, applying 2.1 and 3.1 we have

$$
\begin{aligned}
\langle u, u\rangle^{\prime} & =\int_{G}\left\langle T_{g^{-1}} T_{g} u, T_{g^{-1}} T_{g} u\right\rangle^{\prime} d g \leq \int_{G}\left\|T_{g^{-1}}\right\|^{2}\left\langle T_{g} u, T_{g} u\right\rangle^{\prime} d g \\
& \leq \int_{G} N^{2}\left\langle T_{g} u, T_{g} u\right\rangle^{\prime} d g=N^{2} \int_{G}\left\langle T_{g} u, T_{g} u\right\rangle^{\prime} d g=N^{2}\langle u, u\rangle
\end{aligned}
$$

Then

$$
\left(\|u\|^{\prime}\right)^{2}=\left\|\langle u, u\rangle^{\prime}\right\|_{A} \leq N^{2}\|\langle u, u\rangle\|_{A}=N^{2}\|u\|^{2}
$$

3.3. Remark. $l_{2}(P)$ is a direct summand in $l_{2}(A)$, so 3.2 holds for $l_{2}(P)$.

4. Complements and orthogonal complements

Let us recall some preliminary statements.
4.1. Lemma. 1. An A-linear operator $F: M \rightarrow H_{A}$ always admits a conjugate if $M \in \mathcal{P}(A)$ - the category of finitely generated projective modules.
2. Let $0_{A} \leq \alpha<1_{A}$. Then $\|\alpha\|<1$.
3. Let $\alpha \geq 0, \alpha=\beta \beta^{*}, 1-\alpha>0$. Then $1-\beta$ is an isomorphism.

Here the strong inequality means that the spectrum of the operator is bounded away from zero.
4.2. Example. Let $A=C[0,1],\left\{e_{i}\right\}$ be the standard basis of H_{A}. Let

$$
\varphi_{i}(x)=\left\{\begin{array}{l}
0 \quad \text { on }\left[0, \frac{1}{i}\right] \text { and }\left[\frac{1}{i-1}, 1\right] \\
1 \quad \text { at } x_{i}=\frac{1}{2}\left(\frac{1}{i}+\frac{1}{i-1}\right) \\
\text { linear on }\left[\frac{1}{i}, x_{i}\right] \text { and }\left[x_{i}, \frac{1}{i-1}\right]
\end{array}\right.
$$

$i=2,3, \ldots$ Let

$$
h_{i}=\frac{e_{i}+\varphi_{i} e_{1}}{\left(1+\varphi_{i}^{2}\right)^{1 / 2}} \quad(i=2,3, \ldots)
$$

be an orthonormal system of vectors which generates $H_{1} \subset H_{A}, H_{1} \cong H_{A}$. Then $H_{1} \oplus$ $\operatorname{span}_{A}\left(e_{1}\right)=H_{A}$. Indeed, all $e_{i} \in H_{1}+\operatorname{span}_{A}\left(e_{1}\right)$, and if

$$
\begin{gathered}
x=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in H_{1} \cap \operatorname{span}_{A}\left(e_{1}\right), \\
x=\left(\alpha_{1}, 0, \ldots\right)=\sum_{i=2}^{\infty} \beta_{i} h_{i},
\end{gathered}
$$

then all $\beta_{i}=0, x=0$. However the module H_{1} does not have an orthogonal complement. More precisely we have the following situation. Let $y=\sum_{j=1}^{\infty} \alpha_{j} e_{j}$ be in H_{1}^{\perp}. Then $\left\langle\sum_{j=1}^{\infty} \alpha_{j} e_{j}, h_{i}\right\rangle=0$ for $i=2,3, \ldots$, so $\alpha_{i}+\alpha_{1} \varphi_{i}=0 \quad(i=2,3, \ldots)$, and $\alpha_{i}=-\alpha_{1} \varphi_{i}$, hence

$$
y=\left(\alpha_{1},-\alpha_{1} \varphi_{2},-\alpha_{1} \varphi_{3}, \ldots\right)
$$

This is possible if and only if the function α_{1} vanishes at $0: \alpha_{1}(0)=0$. If $H_{1} \oplus H_{1}^{\perp}=H_{A}$, then for some α_{1} we have $e_{1}=y+\sum_{i=2}^{\infty} \beta_{i} h_{i}$. In particular the series $\sum_{i=2}^{\infty} \beta_{i} \bar{\beta}_{i}$ converges and

$$
1=\alpha_{1}+\sum_{i=2}^{\infty} \frac{\beta_{i} \varphi_{i}}{\left(1+\varphi_{i}^{2}\right)^{1 / 2}}
$$

But $\left\|\beta_{i}\right\|_{A} \rightarrow 0$, so for

$$
\gamma=\sum_{i=2}^{\infty} \frac{\beta_{i} \varphi_{i}}{\left(1+\varphi_{i}^{2}\right)^{1 / 2}}
$$

we get $\gamma(0)=0$, as well as for α_{1}. We come to a contradiction.
Let us investigate the involution J which determines a representation of \mathbb{Z}_{2} :

$$
J(x)=\left\{\begin{aligned}
x & \text { if } x \in H_{1}, \\
-x & \text { if } x \in \operatorname{span}_{A} e_{1},
\end{aligned}\right.
$$

This operator does not admit a conjugate. Indeed, let J^{*} exist. Then $\left(J^{*}\right)^{2}=J^{2}=\mathrm{Id}$, so J^{*} is also an involution.

$$
\begin{array}{rc}
J^{*} x=x \quad \Leftrightarrow \quad\left(J^{*} x, y\right)=(x, y) \quad \forall y \quad \Leftrightarrow \quad(x, J y)=(x, y) \quad \forall y \quad \Leftrightarrow \\
\Leftrightarrow \quad(x,(J-1) y)=0 \quad \forall y \quad \Leftrightarrow x \perp \operatorname{Im}(J-1) \quad \Leftrightarrow \\
& \Leftrightarrow \quad x \perp \operatorname{span}_{A}\left(e_{1}\right)
\end{array}
$$

and $J^{*} x=-x \quad \Leftrightarrow \quad x \perp H_{1}$. But H_{1} has no orthogonal complement and so the involution J^{*} can not be defined. Nevertheless for the A-product averaged by the action of \mathbb{Z}_{2}

$$
\langle x, y\rangle_{2}=1 / 2(\langle x, y\rangle+\langle J x, J y\rangle)
$$

we get if $x \in H_{1}, y \in \operatorname{span}_{A}\left(e_{1}\right): \quad\langle x, y\rangle_{2}=1 / 2(\langle x, y\rangle+\langle x,-y\rangle)=0$, so the + and subspaces of the involution are orthogonal to each other, and $J_{(2)}^{*}=J$.

Let us recall the definition of A-Fredholm operator [11, 13]. The theorem which will be proved is the crucial one for the possibility of construction of Sobolev chains in the C^{*}-case.
4.3. Definition. A bounded A-operator $F: H_{A} \rightarrow H_{A}$ admitting a conjugate is called Fredholm, if there exist decompositions of the domain of definition $H_{A}=M_{1} \oplus N_{1}$ and the range $H_{A}=M_{2} \oplus N_{2}$ where $M_{1}, M_{2}, N_{1}, N_{2}$ are closed A-modules, N_{1}, N_{2} have a finite number of generators, and such that the operator F has in these decompositions the following form

$$
F=\left(\begin{array}{cc}
F_{1} & 0 \\
0 & F_{2}
\end{array}\right),
$$

where $F_{1}: M_{1} \rightarrow M_{2}$ is an isomorphism.
4.4. Lemma. Let $J: H_{A} \rightarrow H_{A}$ be a self adjoint injection. Then J is an isomorphism. Here injection means an injective A-homomorphism with closed range.

Proof. Let us consider $J_{1}=J: H_{A} \rightarrow J\left(H_{A}\right)$. It is an isomorphism of Hilbert modules admitting a conjugate $J_{1}^{*}=\left.J^{*}\right|_{J\left(H_{A}\right)}=\left.J\right|_{J\left(H_{A}\right)}$. Let $J_{2}=J\left(J_{1}^{*} J_{1}\right)^{-1 / 2}$; then $\left\langle J_{2} x, J_{2} y\right\rangle=\langle x, y\rangle$ for every $x, y \in H_{A}$. We have $J_{2}\left(H_{A}\right)=J\left(H_{A}\right)$ and $J_{2}^{*} J_{2}=1$. Let $z \in H_{A}$ be an arbitrary element. Then

$$
z=J_{2} J_{2}^{*} z+\left(z-J_{2} J_{2}^{*} z\right), \quad J_{2} J_{2}^{*} z \in J_{2}\left(H_{A}\right)
$$

and

$$
J_{2}^{*}\left(z-J_{2} J_{2}^{*} z\right)=J_{2}^{*} z-\left(J_{2}^{*} J_{2}\right) J_{2}^{*} z=J_{2}^{*} z-J_{2}^{*} z=0
$$

so $\left(z-J_{2} J_{2}^{*} z\right) \in \operatorname{Ker} J_{2}^{*}$, but

$$
\begin{aligned}
x \in \operatorname{Ker} J_{2}^{*} & \Leftrightarrow \quad \forall y: \quad\left\langle J_{2}^{*} x, y\right\rangle=0 \quad \Leftrightarrow \\
& \Leftrightarrow \quad \forall y: \quad\left\langle x, J_{2} y\right\rangle=0 \quad \Leftrightarrow \quad x \in J_{2}\left(H_{A}\right)^{\perp} .
\end{aligned}
$$

Hence $J_{2} J_{2}^{*} z \in J_{2}\left(H_{A}\right),\left(z-J_{2} J_{2}^{*}\right) \in J_{2}\left(H_{A}\right)^{\perp}$, and

$$
H_{A}=J_{2}\left(H_{A}\right) \widehat{\bigoplus} J_{2}\left(H_{A}\right)^{\perp}=J\left(H_{A}\right) \widehat{\bigoplus} J\left(H_{A}\right)^{\perp}
$$

So, if $J\left(H_{A}\right)^{\perp}=0$, then J is an isomorphism. Let $x \in J\left(H_{A}\right)^{\perp}$, then $x \in J^{*}\left(H_{A}\right)^{\perp}$, so $\forall y: \quad\left\langle x, J^{*} y\right\rangle=0$ or $\forall y: \quad\langle J x, y\rangle=0$, and $x \in \operatorname{Ker} J$. But J is an injection, and so, $x=0$.
4.5. Lemma. Let $F: M \rightarrow H_{A}$ be an injection admitting a conjugate. Then

$$
F(M) \widehat{\bigoplus} F(M)^{\perp}=H_{A}
$$

Proof. We can assume by the stabilization theorem that $M=H_{A}^{1} \cong H_{A}$. Then $F^{*} F$: $H_{A}^{1} \rightarrow H_{A}^{1}$ is a self adjoint operator. Let $\|x\|=1$, then

$$
\|F x\|^{2}=\|\langle F x, F x\rangle\| \geqslant c^{2}
$$

by injectivity and

$$
\left\|F^{*} F x\right\|=\left\|F^{*} F x\right\|\|x\| \geqslant\left\|\left\langle F^{*} F x, x\right\rangle\right\|=\|\langle F x, F x\rangle\| \geqslant c^{2} .
$$

So $F^{*} F: H_{A}^{1} \rightarrow H_{A}^{1}$ is a self adjoint injection and it is an isomorphism by the previous lemma. Moreover, $F^{*} F \geqslant 0$, and so, $\left(F^{*} F\right)^{-1 / 2}$ can be defined. Hence $U=F\left(F^{*} F\right)^{-1 / 2}$: $M \rightarrow H_{A}$ (which is an injection with $U(M)=F(M)$) is well defined. We have $U^{*} U=\operatorname{Id}_{M}$. Let $z \in H_{A}$ be an arbitrary element. Then

$$
z=U U^{*} z+\left(z-U U^{*} z\right), \quad U^{*}\left(z-U U^{*} z\right)=U^{*} z-\left(U^{*} U\right) U^{*} z=U^{*} z-U^{*} z=0
$$

Since $y \in \operatorname{Ker} U^{*} \quad \Leftrightarrow \quad\left\langle U^{*} y, x\right\rangle=0 \forall x \quad \Leftrightarrow\langle y, U x\rangle=0 \forall x \quad \Leftrightarrow \quad y \perp \operatorname{Im} U$ we get

$$
U^{*} U z \in \operatorname{Im} U=\operatorname{Im} F, \quad\left(z-U U^{*} z\right) \in(\operatorname{Im} U)^{\perp}
$$

The proof is finished because z is an arbitrary element.
4.6. Lemma. Let $H_{A}=M \oplus N, p: H_{A} \rightarrow M$ be a projection, N be a finitely generated projective module. Then $M \widehat{\bigoplus} M^{\perp}=H_{A}$ if and only if p admits a conjugate.
Proof. If there exists p^{*}, then there exists $(1-p)^{*}=1-p^{*}$, so by $[11] \operatorname{Ker}(1-p)=M$ is the kernel of a self adjoint projection.

To prove the converse statement let us start from the case where N is a free module and let us prove first that $H_{A}=N^{\perp}+M^{\perp}$. By the Kasparov stabilization theorem we can assume that

$$
N=\operatorname{span}_{A}\left\langle e_{1}, \ldots, e_{n}\right\rangle, \quad N^{\perp}=\operatorname{span}_{A}\left\langle e_{n+1}, e_{n+2}, \ldots\right\rangle
$$

Let g_{i} be the image of e_{i} by the projection of N on M^{\perp} :

$$
e_{1}=f_{1}+g_{1}, \ldots, e_{n}=f_{n}+g_{n}, \quad f_{i} \in M, g_{i} \in M^{\perp}
$$

This projection is an isomorphism of A-modules $N \cong M^{\perp}$, so the elements g_{1}, \ldots, g_{n} are free generators and $\left\langle g_{k}, g_{k}\right\rangle>0_{A}$. Hence, if

$$
f_{k}=\sum_{k=1}^{\infty} f_{k}^{i} e_{i}, \quad \text { then } \quad e_{k}-f_{k}^{k} e_{k}=\sum_{i \neq k} f_{k}^{i} e_{i}+g_{k}
$$

On the other hand

$$
1=\left\langle e_{k}, e_{k}\right\rangle=\left\langle f_{k}, f_{k}\right\rangle+\left\langle g_{k}, g_{k}\right\rangle, \quad 1-\left(f_{k}^{k}\right)\left(f_{k}^{k}\right)^{*} \geqslant\left\langle g_{k}, g_{k}\right\rangle>0
$$

Then by 2.1 the element $1-f_{k}^{k}$ is invertible in A,

$$
e_{k}=\frac{1}{1-f_{k}^{k}}\left(\sum_{i \neq k} f_{k}^{i} e_{i}+g_{k}\right) \in N^{\perp}+M^{\perp} \quad(k=1, \ldots, n)
$$

so, $N^{\perp}+M^{\perp}=H_{A}$. Let $x \in N^{\perp} \cap M^{\perp}$. Every $y \in H_{A}=M \oplus N$ has the form $y=m+n$, so $\langle x, y\rangle=\langle x, m\rangle+\langle x, n\rangle=0$, in particular, $\langle x, x\rangle=0$ and $x=0$. Hence, $H_{A}=N^{\perp} \oplus M^{\perp}$. Let us consider

$$
q= \begin{cases}1 & \text { on } N^{\perp} \\ 0 & \text { on } M^{\perp}\end{cases}
$$

It is a bounded projection because $H_{A}=N^{\perp} \oplus M^{\perp}$. Let $x+y \in M \oplus N, x_{1}+y_{1} \in N^{\perp} \oplus M^{\perp}$. Then

$$
\begin{aligned}
& \left\langle p(x+y), x_{1}+y_{1}\right\rangle=\left\langle x, x_{1}+y_{1}\right\rangle=\left\langle x, x_{1}\right\rangle \\
& \left\langle x+y, q\left(x_{1}+y_{1}\right)\right\rangle=\left\langle x+y, x_{1}\right\rangle=\left\langle x, x_{1}\right\rangle .
\end{aligned}
$$

Hence, there exists $p^{*}=q$.
To prove the general case let $\tilde{H}_{A}=H_{A} \widehat{\bigoplus} \tilde{N}$ with $N \widehat{\oplus} \tilde{N}$ a free module. Then, by the previous case,

$$
\begin{gathered}
M \widehat{\bigoplus} \tilde{M}=\tilde{H}_{A} \\
M \widehat{\bigoplus}\left(M^{\perp} \widehat{\bigoplus} \tilde{N}\right)=H_{A} \widehat{\bigoplus} \tilde{N} \\
M \widehat{\bigoplus} M^{\perp}=H_{A}
\end{gathered}
$$

4.7. Theorem. In the decomposition in the definition of A-Fredholm operator we can always assume M_{0} and M_{1} admitting an orthogonal complement. More precisely, there exists a decomposition for F

$$
\left(\begin{array}{cc}
F_{3} & 0 \\
0 & F_{4}
\end{array}\right): H_{A}=V_{0} \oplus W_{0} \rightarrow V_{1} \oplus W_{1}=H_{A}
$$

such that $V_{0}^{\perp} \widehat{\bigoplus} V_{0}=H_{A}, V_{1}^{\perp} \widehat{\bigoplus} V_{1}=H_{A}$, or (by the previous lemma it is just the same) such that the projections

$$
p_{0}: V_{0} \oplus W_{0} \rightarrow V_{1}, \quad p_{1}: V_{1} \oplus W_{1} \rightarrow V_{1}
$$

admit conjugates.
Proof. Let $W_{0}=N_{0}, V_{0}=W_{0}^{\perp}$. This orthogonal complement exists by [4], and $\left.F\right|_{W_{0}^{\perp}}$ is an isomorphism. Indeed, if $x_{n} \in W_{0}^{\perp}$, then let $x_{n}=x_{1}^{n}+x_{2}^{n}, x_{1}^{n} \in M_{0}, x_{2}^{n} \in W_{0},\left\|x_{n}\right\|=1$.

Let us assume that $\left\|F x_{n}\right\| \rightarrow 0$. Then $\left\|F x_{1}^{n}+F x_{2}^{n}\right\| \rightarrow 0$, and, since $F x_{1}^{n} \in V_{1}, F x_{2}^{n} \in$ $W_{1}, V_{1} \oplus W_{1}=H_{A}$, then this means that $\left\|F x_{1}^{n}\right\| \rightarrow 0$ and $\left\|F x_{2}^{n}\right\| \rightarrow 0$, and, since F_{1} is an isomorphism, then $\left\|x_{1}^{n}\right\| \rightarrow 0$. If a_{1}, \ldots, a_{s} are the generators of $W_{0}=N_{0}$, then

$$
\begin{aligned}
0 & =\left\langle x_{n}, a_{j}\right\rangle=\left\langle x_{1}^{n}, a_{j}\right\rangle+\left\langle x_{2}^{n}, a_{j}\right\rangle \\
\left\|\left\langle x_{2}^{n}, a_{j}\right\rangle\right\| & =\left\|\left\langle x_{1}^{n}, a_{j}\right\rangle\right\| \leqslant\left\|x_{1}^{n}\right\|\left\|a_{j}\right\| \rightarrow 0 \quad(n \rightarrow \infty)
\end{aligned}
$$

for any $j=1, \ldots, s$. Hence, since $x_{2}^{n} \in N$, we have $x_{2}^{n} \rightarrow 0 \quad(n \rightarrow \infty)$ and $x_{n}=x_{1}^{n}+x_{2}^{n} \rightarrow$ 0 , but this contradicts the equality $\left\|x_{n}\right\|=1$. This contradiction shows that $\left.F\right|_{W_{0}^{\perp}}$ is an isomorphism.

Let $V_{1}=F\left(V_{0}\right)$. Since $W_{0}=N_{0}$, we can assume that $W_{1}=N_{1}$. Indeed, any $y \in H_{A}$ has the form $y=m_{1}+n_{1}=F\left(m_{0}\right)+n_{1}$, where $m_{1} \in M_{1}, n_{1} \in N_{1}, m_{0} \in M_{0}$. On the other hand, $m_{0}=v_{0}+n_{0}$, where $v_{0} \in V_{0}, n_{0} \in W_{0}=N_{0}$, and

$$
y=F\left(v_{0}+n_{0}\right)+n_{1}=F\left(v_{0}\right)+\left(F\left(n_{0}\right)+n_{1}\right) \in V_{1}+N_{1} .
$$

Hence, $H_{A}=V_{1}+W_{1}$.
Let $y \in V_{1} \cap W_{1}=V_{1} \cap N_{1}$, so that $n_{1}=y=F\left(v_{0}\right), n_{1} \in N_{1}, v_{0} \in V_{0}$. Let us decompose $v_{0}+n_{0}$, where $m_{0} \in M_{0}, n_{0} \in N_{0}$. Then

$$
\begin{aligned}
& n_{1}=F\left(m_{0}\right)+F\left(n_{0}\right), \\
& F\left(m_{0}\right)=n_{1}-F\left(n_{0}\right), \quad F\left(m_{0}\right) \in M_{1}, \quad n_{1}-F\left(n_{0}\right) \in N_{1} .
\end{aligned}
$$

Hence $F\left(m_{0}\right)=0, \quad n_{1}-F\left(n_{0}\right)=0$, and since $F: M_{0} \cong M_{1}$, then $m_{0}=0$. We have $v_{0} \in V_{0}=N_{0}^{\perp}$ and hence,

$$
0=\left\langle v_{0}, n_{0}\right\rangle=\left\langle m_{0}+n_{0}, n_{0}\right\rangle=\left\langle n_{0}, n_{0}\right\rangle, \quad n_{0}=0 .
$$

So, $v_{0}=m_{0}+n_{0}=0, y=F\left(v_{0}\right)=0$. Hence $V_{1} \cap W_{1}=0$ and $H_{A}=V_{1} \oplus W_{1}$.
By $4.5 V_{1}$ has an orthogonal complement $V_{1}^{\perp}, V_{1} \widehat{\bigoplus} V_{1}^{\perp}=H_{A}$, and this completes the proof.
4.8. Remark. If we do not restrict the operator F to admit a conjugate, we can assert that there exists a decomposition

$$
F: N_{0}^{\perp} \oplus N_{0} \rightarrow M_{1} \oplus L_{n},
$$

where $L_{n}=\operatorname{span}_{A}\left(e_{1}, \ldots, e_{n}\right)$, but M_{1} may have no orthogonal complement. This result was proved in [6].

5. Lefschetz numbers with values in $H C_{0}(A)$

5.1. Definition. Let $\left\{e_{1}, e_{2}, \ldots\right\}$ be an A-orthobasis of $H_{A}=l_{2}(A)$ (the Hilbert module over A) with A-inner product (,). Let $S \in \operatorname{End}_{A}^{*} H_{A}$ (the A-linear endomorphisms of H_{A} admitting an adjoint) and $S\left(e_{i}\right)=0(i>k)$. We define the trace of S by

$$
t\left(S,\left\{e_{i}\right\}, k\right)=\sum_{i=1}^{\infty} f\left(\left(S e_{i}, e_{i}\right)\right)=\sum_{i=1}^{k} f\left(S_{i}^{i}\right)
$$

where $f: A \rightarrow A /[A, A]=H C_{0}(A),\left\|S_{j}^{i}\right\|$ is the matrix of S with respect to $\left\{e_{i}\right\}, S_{j}^{i} \in A$.
5.2. Lemma. $t\left(S,\left\{e_{i}\right\}, k\right)=t\left(S,\left\{e_{i}\right\}, l\right):=t\left(S,\left\{e_{i}\right\}\right)$ for $l \geqslant k$.

The proofs of this lemma and the other statements of this Section can be found in [18].
5.3. Lemma. Let $S,\left\{e_{i}\right\}, k$ be as in 5.1 and $\left\{h_{j}\right\}$ a new A-basis of H_{A} (in general non-orthogonal). Then the series

$$
\sum_{r=1}^{\infty} f\left(\left(S_{h}\right)_{r}^{r}\right)
$$

converges to $t\left(S,\left\{e_{i}\right\}\right)$, where $\left(S_{h}\right)_{r}^{p}$ are the matrix elements of S with respect to $\left\{h_{i}\right\}$.
Let us note that a basis of H_{A} is a system of elements $\left\{h_{i}\right\}$, such that $h_{i}=B e_{i}$, where $B \in \mathrm{GL}^{*}$ (automorphisms admitting a conjugate). The matrix of S with respect to the $\left\{h_{i}\right\}$ is the matrix of $B^{-1} S B$ with the respect to $\left\{e_{i}\right\}$, i.e., $\left(S_{h}\right)_{j}^{i}=\left(B^{-1} S B\right)_{j}^{i}=\left\langle B^{-1} S B e_{i}, e_{j}\right\rangle$.

So we can give instead of 5.1 the following correct definition.
5.4. Definition. Let $S \in \operatorname{End}_{A}^{*} H_{A}, M$ and N Hilbert submodules of H_{A}, N finitely generated, $H_{A}=M \oplus N,\left.S\right|_{M}=0$. For an arbitrary basis $\left\{e_{i}\right\}$ we define

$$
t(S)=\sum_{i=1}^{\infty} f\left(S_{i}^{i}\right)
$$

5.5. Lemma. Let M, N, S be as in 5.4, and \tilde{N} be a countably generated Hilbert A module, $\tilde{H}_{A}=H_{A} \widehat{\bigoplus} \tilde{N} \cong H_{A}$,

$$
\tilde{S}=\left(\begin{array}{ll}
S & 0 \\
0 & 0
\end{array}\right): H_{A} \widehat{\bigoplus} \tilde{N} \rightarrow H_{A} \widehat{\bigoplus} \tilde{N}
$$

Then $t(S)=t(\tilde{S})$.
5.6. Lemma. Let M, N, S be as in $5.4, M \cong H_{A}, N=\bar{N} \oplus \overline{\bar{N}},\left.S\right|_{\bar{N}}=0$. Then

$$
t(S)=t(p S p)
$$

where $p: M \oplus \bar{N} \oplus \overline{\bar{N}} \rightarrow M \oplus \bar{N}$ is a projection, and the sum on the right is in the space $M \oplus \bar{N} \cong H_{A}$. Let us notice, that if we denote by

$$
q: M \oplus N \rightarrow M, \quad p_{1}: N \rightarrow \bar{N}
$$

the projections, then they admit conjugates. Hence, the projection $p=q+p_{1}(1-q)$ admits one, too.
5.7. Corollary. If in $5.5 M \oplus \bar{N}$ is orthogonal to $\overline{\bar{N}}$, and $\left\{h_{i}\right\}$ is an A-orthobasis of $M \oplus \bar{N}$, then

$$
t(S)=\sum_{i=1}^{\infty} f\left(\left\langle S h_{i}, h_{i}\right\rangle\right)
$$

Definition. Let $F: H_{A} \rightarrow H_{A}$ be an A-Fredholm operator (admitting an adjoint),

$$
\left(\begin{array}{cc}
F_{1} & 0 \tag{D}\\
0 & F_{2}
\end{array}\right): H_{A}=M_{0} \oplus N_{0} \rightarrow M_{1} \oplus N_{1}=H_{A}
$$

a corresponding decomposition, restricted to satisfy the condition as in 4.7 (we always will assume this without specification). Let S_{0} and S_{1} be operators from $\operatorname{End}_{A}^{*} H_{A}$, such that the diagram

commutes. Let

$$
\tilde{S}_{0}=\left\{\begin{array}{r}
0 \text { on } M_{0}, \\
S_{0} \text { on } N_{0},
\end{array} \quad \tilde{S}_{1}=\left\{\begin{array}{r}
0 \text { on } M_{1}, \\
S_{1} \text { on } N_{1}
\end{array}\right.\right.
$$

Let us define

$$
L(F, S, D)=t\left(\tilde{S}_{0}\right)-t\left(\tilde{S}_{1}\right)
$$

5.9. Lemma. Let

$$
\begin{align*}
& H_{A}=M_{0} \oplus N_{0} \rightarrow M_{1} \oplus N_{1}=H_{A} \tag{D}\\
& H_{A}=\tilde{M}_{0} \oplus N_{0} \rightarrow \tilde{M}_{1} \oplus N_{1}=H_{A} \tag{D}
\end{align*}
$$

then

$$
L(F, S, D)=L(F, S, \tilde{D})
$$

5.10. Lemma. Let

$$
\begin{aligned}
H_{A} & =\left(M_{0} \oplus N_{0}\right) \oplus K_{0} \rightarrow\left(M_{1} \oplus N_{1}\right) \oplus K_{1}=H_{A},
\end{aligned} \quad\left(D_{1}\right), ~\left(N_{1} \oplus K_{1}\right)=H_{A} \quad\left(D_{2}\right)
$$

be two decompositions for F. Then $L\left(F, S, D_{1}\right)=L\left(F, S, D_{2}\right)$.
5.11. Lemma. Let

$$
\begin{equation*}
H_{A}=M_{0} \oplus N_{0} \rightarrow M_{1} \oplus N_{1}=H_{A} \tag{D}
\end{equation*}
$$

and

$$
H_{A}=\bar{M}_{0} \oplus \bar{N}_{0} \rightarrow \bar{M}_{1} \oplus \bar{N}_{1}=H_{A} \quad(\bar{D})
$$

be two decompositions for F. Then $L(F, S, D)=L(F, S, \bar{D})$. So L does not depend on D and we denote it by $L(F, S)$.
5.12. Remark. By the stabilization theorem and Lemma 5.5, we can define $L(F, S)$ for any countably generated Hilbert A-module instead of H_{A}.
5.13. Definition. Let $T=\left\{T_{i}\right\}$ be an endomorphism of an A-elliptic complex E :

$$
\begin{array}{ccccccc}
0 & \longrightarrow & \Gamma\left(E_{0}\right) & \xrightarrow{d_{0}} & \Gamma\left(E_{1}\right) & \longrightarrow & \ldots \\
0 & & \downarrow T_{0} & & \downarrow T_{1} & & \\
0 & \Gamma\left(E_{0}\right) & \xrightarrow{d_{0}} & \Gamma\left(E_{1}\right) & \longrightarrow & \ldots \\
& T_{i+1} d_{i}=d_{i} T_{i}, \quad T_{i} \in \operatorname{End}_{A}^{*} \Gamma\left(E_{i}\right) .
\end{array}
$$

Assume the following
5.14. Condition. Sobolev products in $\Gamma(E)$ can be chosen in such a way that

$$
T_{i} d_{i}^{*}=d_{i}^{*} T_{i+1}
$$

We take $E_{e v}=\oplus E_{2 i}, E_{o d}=\oplus E_{2 i+1}$,

$$
F=d+d^{*}: \Gamma\left(E_{e v}\right) \rightarrow \Gamma\left(E_{o d}\right)
$$

Then F is an A-Fredholm operator and the diagram stated below commutes, where

$$
S_{0}=\oplus T_{2 i}, \quad S_{1}=\oplus T_{2 i+1}
$$

We define the Lefschetz number of the second type as

$$
L_{0}(E, T, m)=L(F, S) \in H C_{0}(A)
$$

where m denotes the dependence on inner products (via d^{*}).
5.15. Lemma. Let $T=T_{g}, g \in G$ as in $\S 2$. Then the condition 5.14 is fulfilled.
5.16. Theorem. If $T=T_{g}, g \in G$, then

$$
L_{0}\left(E, T_{g}, m_{G}\right)=\tilde{C h}_{0}^{0}\left(L_{1}(g, E)\right),
$$

where Ch_{0}^{0} is the Chern character

$$
\mathrm{Ch}_{0}^{0}: K_{0}(A) \rightarrow H C_{0}(A)
$$

(see $[3,7,8]$), and

$$
\tilde{\mathrm{Ch}}_{0}^{0}(a \otimes z)=\mathrm{Ch}_{0}^{0}(a) z, \quad z \in \mathbb{C} .
$$

In particular, L_{0} does not depend on m_{G}.
Proof. We have

$$
L_{1}(g, E)=\operatorname{ind}_{G, A}^{X}([\sigma(E)])(g)=\operatorname{ind}_{G, A}^{X}(F)(g)
$$

Let

$$
\begin{equation*}
M_{o} \oplus N_{0} \rightarrow M_{1} \oplus N_{1} \tag{D}
\end{equation*}
$$

be a decomposition for F. Then by 2.8 and [15]

$$
N_{0}=\bigoplus_{k=1}^{K} V_{k} \otimes P_{k}, \quad N_{1}=\bigoplus_{l=1}^{L} W_{l} \otimes Q_{l}
$$

where V_{k} and W_{l} are \mathbb{C}-vector spaces of irreducible representations of G, P_{k} and Q_{l} are G-trivial projective finitely generated A-modules. Then (representations are unitary)

$$
\operatorname{ind}_{G, A}^{X}(F)=\sum_{k=1}^{K}\left[P_{k}\right] \otimes \chi\left(V_{k}\right)-\sum_{l=1}^{L}\left[Q_{l}\right] \otimes \chi\left(W_{l}\right)
$$

and

$$
\begin{equation*}
L_{1}(g, E)=\sum_{k=1}^{K}\left[P_{k}\right] \otimes \operatorname{Trace}\left(g \mid V_{k}\right)-\sum_{l=1}^{L}\left[Q_{l}\right] \otimes \operatorname{Trace}\left(g \mid W_{l}\right) \tag{2}
\end{equation*}
$$

The end of the proof see in [18].

6. Lefschetz numbers with values in $H C_{2 l}(A)$

Let $W^{*} A$ be the universal enveloping von Neumann algebra of the algebra A with the norm topology. Let U be a unitary operator in the Hilbert module A^{n}. Then

$$
\begin{equation*}
U=\int_{S^{1}} e^{i \varphi} d P(\varphi) \tag{3}
\end{equation*}
$$

where $P(\varphi)$ is the projection valued measure valued in the space of matrices $M\left(n, W^{*} A\right)$, and the integral converges with respect to the norm. Let us associate with the integral sum

$$
\sum_{k} e^{i \varphi_{k}} P\left(E_{k}\right)
$$

the following class of the cyclic homology $H C_{2 l}\left(M\left(n, W^{*} A\right)\right)$:

$$
\sum_{k} P\left(E_{k}\right) \otimes \ldots \otimes P\left(E_{k}\right) \cdot e^{i \varphi_{k}}
$$

Passing to the limit we get the following element

$$
\tilde{T} U=\int_{S^{1}} e^{i \varphi} d(P \otimes \ldots \otimes P)(\varphi) \in H C_{2 l}\left(M\left(n, W^{*} A\right)\right)
$$

Then we define

$$
T(U)=\operatorname{Tr}_{*}^{n} \tilde{T} U \in H C_{2 l}\left(W^{*} A\right)
$$

6.1. Lemma. Let $J: M=A^{m} \rightarrow N=A^{n}$ be an isomorphism, $U_{M}: M \rightarrow M, U_{N}$: $N \rightarrow N$ be A-unitary operators and $J U_{M}=U_{N} J$. Then

$$
T\left(U_{M}\right)=T\left(U_{N}\right)
$$

Proof. If

$$
U_{M}=\int_{S^{1}} e^{i \varphi} d P(\varphi)
$$

then

$$
U_{N}=J U_{M} J^{-1}=\int_{S^{1}} e^{i \varphi} d J P J^{-1}(\varphi)
$$

To verify the equality $T\left(U_{M}\right)=T\left(U_{N}\right)$ it is sufficient to verify that

$$
\begin{aligned}
\operatorname{Tr}_{*}^{m}\left[\sum_{k} P\left(E_{k}\right)\right. & \left.\otimes \ldots \otimes P\left(E_{k}\right) \cdot e^{i \varphi_{k}}\right]= \\
& =\operatorname{Tr}_{*}^{n}\left[\sum_{k} J P\left(E_{k}\right) J^{-1} \otimes \ldots \otimes J P\left(E_{k}\right) J^{-1} \cdot e^{i \varphi_{k}}\right] \in H C_{2 l}\left(W^{*} A\right)
\end{aligned}
$$

but this follows from well-definedness of the Chern character $\mathrm{Ch}_{2 l}^{0}: K_{0}(B) \rightarrow H C_{2 l}(B)$ (see $[3,8]$).

Let now U be equal to U_{g}, i.e. an operator representing $g \in G$. Then (3) turns to be the sum associated with the decomposition from 2.8 and [15]

$$
A^{n} \cong \bigoplus_{k=1}^{M} Q_{k} \otimes V_{k}
$$

where $V_{k} \cong \mathbb{C}^{L_{k}}$, and Q_{k} are projective A-modules of finite type. Then

$$
U_{g}\left(\sum_{k=1}^{M} x_{k} \otimes v_{k}\right)=\sum_{k=1}^{M} x_{k} \otimes u_{g}^{k} v_{k}=\sum_{k=1}^{M} \sum_{l=1}^{L_{k}} x_{k} \otimes e^{i \varphi_{l}^{k}} v_{k}^{l} f_{l},
$$

where $f_{1}, \ldots, f_{L_{k}}$ is the diagonalizing basis for $u_{g}^{k} ; v_{k}=\sum v_{k}^{l} f_{l}$. Then we can define

$$
\begin{equation*}
\tau\left(U_{g}\right)=\sum_{k=1}^{M} \sum_{l=1}^{L_{k}} \mathrm{Ch}_{2 l}^{0}\left[P_{k}\right] \cdot \operatorname{Trace}\left(u_{g}^{k}\right) \in H C_{2 l}(A) \tag{4}
\end{equation*}
$$

We have $T\left(U_{g}\right)=i_{*}\left(\tau\left(U_{g}\right)\right)$, where $i: A \rightarrow W^{*} A$.
A similar technique can be developed for a projective module N instead of A^{n}. For this purpose we take $N=q\left(A^{n}\right)$,

$$
\begin{gathered}
U \oplus 1: A^{n} \cong N \oplus(1-q) A^{n} \rightarrow N \oplus(1-q) A^{n} \cong A^{n} \\
\tilde{T} U=\int_{S^{1}} e^{i \varphi} d(q P q \otimes \ldots \otimes q P q)(\varphi) .
\end{gathered}
$$

The well-definedness is an immediate consequence of Lemma 6.1.
Let us consider a G-invariant A-elliptic complex (E, d), and let the Sobolev A-products be chosen invariant, so that $T_{g}=U_{g}$ are unitary operators (see $\S 3$).
6.2. Lemma. We can choose a decomposition for the A-Fredholm operator

$$
\begin{gathered}
F=d+d^{*}: \Gamma\left(E_{e v}\right) \rightarrow \Gamma\left(E_{o d}\right), \\
F: M_{0} \oplus \tilde{N}_{0} \rightarrow M_{1} \oplus \tilde{N}_{1}, \quad F: M_{0} \cong M_{1},
\end{gathered}
$$

such that

$$
\begin{aligned}
\tilde{N}_{0}=\oplus_{i} N_{2 i}, & N_{2 i} \\
\subset & \subset\left(E_{2 i}\right), \\
\tilde{N}_{1}=\oplus_{i} N_{2 i+1}, & N_{2 i+1}
\end{aligned} \subset \Gamma\left(E_{2 i+1}\right), ~ \$
$$

where N_{m} are projective invariant modules.
Proof. Let us assume that the complex consists of operators of the degree m, so $F=$ $d+d^{*}$ is an A-Fredholm operator in the spaces $H^{m}\left(E_{e v}\right) \rightarrow H^{0}\left(E_{o d}\right)$. We can choose the basis in $H^{m}\left(E_{e v}\right)$ (or the decomposition into modules P_{j} in $l_{2}(P)$) in such a way that $e_{m s+j} \in \Gamma\left(E_{2 j}\right)$, where $E_{0}, E_{2}, \ldots, E_{2 j}, \ldots, E_{2 m}$ are all non-zero terms of the complex, $s \in \mathbb{N}, j=0, \ldots, m$ (and in a similar way for P_{j}). As usual, without loss of generality we can assume that

$$
\tilde{N}_{0}=\operatorname{span}_{A}\left(e_{1}, \ldots, e_{n_{0}}\right), \quad M_{0}=\operatorname{span}_{A}\left(e_{n_{0}+1}, e_{n_{0}+2}, \ldots\right),
$$

and $M_{1}=F\left(M_{0}\right)$ has in $H^{0}\left(E_{o d}\right)$ the A-orthogonal complement M_{1}^{\perp}. Then for every $x \in M_{1}, y \in \tilde{N}_{0}$

$$
\begin{equation*}
\langle x, F y\rangle=\langle F x, y\rangle_{0}, \tag{5}
\end{equation*}
$$

where the first brackets mean the pairing of a functional and an element. So, $F\left(\tilde{N}_{0}\right) \subset M_{1}^{\perp}$ and taking $\tilde{N}_{1}=M_{1}^{\perp}$, we get a decomposition $F: M_{0} \oplus \tilde{N}_{0} \rightarrow M_{1} \oplus \tilde{N}_{1}$.

Let

$$
y=y_{1}+y_{3}+\cdots+y_{2 m+1} \in \tilde{N}_{1} \subset H^{0}\left(E_{o d}\right), \quad y_{2 j+1} \in H^{0}\left(E_{2 j+1}\right)
$$

and

$$
x=x_{0}+x_{2}+\cdots+x_{2 m} \in M_{0} \subset H^{m}\left(E_{e v}\right), \quad x_{2 j} \in H^{m}\left(E_{2 j}\right) .
$$

Then $\langle F x, y\rangle_{0}=0$, where

$$
\begin{array}{rcccccc}
F x & = & d^{*} x_{0} & + & \sum_{i=1}^{m}\left(d x_{2 i-2}+d^{*} x_{2 i}\right) & + & d x_{2 m} \\
& \in & 0 & \oplus & \oplus & \oplus \\
i=1
\end{array} H^{0}\left(E_{2 i+1}\right) \quad \oplus \quad 0 .
$$

Since (E, d) is a complex, $d^{2}=0$ and

$$
\left\langle d u, d^{*} v\right\rangle=\left\langle d^{2} u, v\right\rangle=0,
$$

so

$$
\begin{array}{cc}
\left\langle y_{2 j+1}, d x_{2 j}\right\rangle=0, & \left\langle y_{2 j+1}, d^{*} x 2 j+2\right\rangle=0 \quad(j=0,1, \ldots, m) \\
\left\langle y_{2 j+1}, d x\right\rangle=0, & \left\langle y_{2 j+1}, d^{*} x\right\rangle=0 .
\end{array}
$$

Hence $e_{2 j+1} \in F\left(M_{0}\right)^{\perp}=M_{1}^{\perp}=\tilde{N}_{1}$, and

$$
\tilde{N}_{1}=\oplus_{i}\left(\tilde{N}_{1} \cap \Gamma\left(E_{2 i+1}\right)\right)=\oplus_{i} N_{2 i+1} .
$$

6.3. Definition. The Lefschetz number $L_{2 l}$ we define as

$$
L_{2 l}\left(E, U_{g}, m_{G}\right)=\sum_{i}(-1)^{i} \tau\left(U_{g} \mid N_{i}\right) \in H C_{2 l}(A)
$$

where m_{G} denotes the dependence on inner products (via d^{*}).
Remark. For more general situations we hope to use T instead of τ.
6.4. Lemma. The definition of $L_{2 l}$ is correct, i.e. this number does not depend on the choice of decompositions in Lemma 6.2.

Proof. For any two decompositions we can by use of projection (as in [13, 15]) replace \tilde{N}_{0} by a module inside $\operatorname{span}_{A}\left(e_{1}, \ldots, e_{n}\right)$ for a sufficiently great n (we use the notation of Lemma 6.2). By $6.1 \tau\left(U_{g} \mid N_{i}\right)$ does not change under this replacement. So we can assume that we have to compare the decomposition as in 6.2 and the decomposition

$$
\begin{gathered}
F: \bar{M}_{0} \oplus \tilde{\bar{N}}_{0} \rightarrow \bar{M}_{1} \oplus \tilde{\bar{N}}_{1}, \\
\tilde{\bar{N}}_{0}=\oplus_{i} \bar{N}_{2 i}, \quad \bar{N}_{2 i} \subset N_{2 i} \subset \Gamma\left(E_{2 i}\right), \\
\tilde{\bar{N}}_{1}=\oplus_{i} \bar{N}_{2 i+1}, \quad \bar{N}_{2 i+1} \subset \Gamma\left(E_{2 i}\right) .
\end{gathered}
$$

Hence by (5), $\bar{N}_{2 i+1} \subset N_{2 i+1}$. Let $K_{i}=\left(\bar{N}_{i}\right)_{N_{i}}^{\perp}$. Then $F: K_{2 i} \cong K_{2 i+1}$ and by Lemma 6.1 we get $\tau\left(U_{g} \mid K_{2 i}\right)=\tau\left(U_{g} \mid K_{2 i+1}\right)$. Hence

$$
\begin{aligned}
\sum_{i}(-1)^{i} \tau\left(U_{g} \mid N_{i}\right) & =\sum_{i}(-1)^{i}\left(\tau\left(U_{g} \mid \bar{N}_{i}\right)+\tau\left(U_{g} \mid K_{i}\right)\right)= \\
& =\sum_{i}(-1)^{i}\left(\tau\left(U_{g} \mid \bar{N}_{i}\right) .\right.
\end{aligned}
$$

6.5. Theorem. Let $\tilde{\mathrm{Ch}}_{2 l}^{0}(a \otimes z)=\mathrm{Ch}_{2 l}^{0}(a) \cdot z$, where $z \in \mathbb{C}$. Then

$$
L_{2 l}\left(E, U_{g}, m_{G}\right)=\tilde{\mathrm{Ch}}_{2 l}^{0}\left(L_{1}(g, E)\right),
$$

in particular, $L_{2 l}$ does not depend on m_{G}.
Proof. We get the statement immediately from (2) and (4).

References

1. Atiyah M. F. and Segal G. B., The index of elliptic operators. II., Ann. of Math. (2) 87 (1958), 531-545.
2. Barut A. O., Raçzka R., Theory of group representations and applications, PWN - Polish Scientific Publishers, Warszawa, 1977.
3. Connes A., Non-commutative differential geometry, Publ. Math. IHES 62 (1985), 41-144.
4. Dupré M. J., Fillmore P. A., Triviality theorems for Hilbert modules, Topics in modern operator theory, 5th International conference on operator theory. Timisoara and Herculane (Romania), June 2-12, 1980, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1981, pp. 71-79.
5. Friedrich T., Vorlesungen über K-Theorie, Teubner, Leipzig, 1987.
6. Irmatov A., On a new topology in the space of Fredholm operators, Annals of Global Analysis and Geometry 7 (1989), no. 2, 93-106.
7. Karoubi M., Homologie cyclique des groupes et des algébres, C. R. Acad. Sci. Paris, Série 1297 (1983), 381-384.
8. Karoubi M., Homologie cyclique et K-théorie algébrique. I., C. R. Acad. Sci. Paris. Série 1297 (1983), no. 8, 447-450.
9. Kasparov G. G., Topological invariants of elliptic operators. I: K-homology, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 796-838 (in Russian); (English transl.: Math. USSR - Izv. 9 (1975), 751-792).
10. Kasparov G. G., Hilbert C^{*}-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), 133-150.
11. Mishchenko A. S., Banach algebras, pseudo differential operators and their application to K-theory, Usp. Mat. Nauk 34 (1979), no. 6, 67-79 (in Russian); (English transl.: Russ. Math. Surv. 34, No. 6 (1979), 77-91).
12. Mishchenko A. S., Representations of compact groups in Hilbert modules over C^{*}-algebras, Trudy Mat. Inst. Steklov 166 (1984), 161-176 (in Russian); (English transl.: Proc. Steklov Inst. Math., 1986, No. 1 (166)).
13. Mishchenko A. S., Fomenko A. T., The index of elliptic operators over C^{*}-algebras, Izv. Akad. Nauk SSSR. Ser. Mat. 43 (1979), no. 4, 831-859 (in Russian); (English transl.: Math. USSR - Izv., 1980, V. 15, 87-112.).
14. Troitsky E. V., The contractibility of the complete general linear group of the C^{*}-Hilbert module $l_{2}(A)$, Func. Anal. i Pril. 20 (1986), no. 4, 58-64 (in Russian); (English transl.: Funct. Anal. Appl., 1986, V. 20, No. 4, 301-307).
15. Troitsky E. V., The index of equivariant elliptic operators over C^{*}-algebras, Ann. Global Anal. Geom. 5 (1987), no. 1, 3-22.
16. Troitsky E. V., An exact K-cohomological C^{*}-index formula. I. The Thom isomorphism and the topological index, Vestnik Mosc. Univ. Ser. 1. Mat. Meh. (1988), no. 2, 83-85 (in Russian); (English transl.: Moscow Univ. Math. Bull., 1988, v. 43, No. 2, 57-60).
17. Troitsky E. V., An exact K-cohomological C^{*}-index formula. II: The index theorem and its applications, Usp. Mat. Nauk. 44, no. 1, 213-214 (in Russian); (English transl.: Russian Math. Surv., 1989, V. 44, No. 1, 259-261).
18. Troitsky E. V., Lefschetz numbers of C^{*}-complexes, Algebraic Topology, Poznań 1989 (S. Jackowski, B. Oliver, and K. Pawałowski, eds.), Lect. Notes in Math., vol. 1474, Springer-Verlag, Berlin, Heidelberg, and New York, 1991, pp. 193-206.

Chair of Higher Geometry and Topology, Dept. of Mech. and Math., Moscow State University, Moscow, 119899, Russia

E-mail address: troit@difgeo.math.msu.su

[^0]: ${ }^{1}$ in: Novikov Conjectures, Index Theorems and Ridgidity, v. 2 (London Math. Soc. Lect. Notes Series v. 227), 1995. 309-331.

