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Abstract

Let us denote by Endsly(A) the Banach algebra of all bounded A-
homomorphisms of Hilbert A-module [3(A), and by End%l3(A) the C*-algebra of
operators, admitting adjoint. Let GL (A) and GL*(A) denote the correspondent
groups of invertible operators. In the present paper we give a simple proof of the
theorem of Cuntz and Higson on the contractibility of GL*(A) for A with strictly
positive element. We prove the contractibility GL (A4) in some special cases, in par-
ticular, for A, being a subalgebra of algebra of compact operators in separable
Hilbert space, and for A = Cy(M), where M is a finite-dimensional manifold. We
prove some generalizations of the theorem of Dixmier and Douady to the cases of

GL (A) and GL*(A) for o—unital A.

1 Introduction

Let us denote by Endaly(A) the Banach algebra of all bounded A-homomorphisms of
Hilbert A-module [3(A), and by End%l2(A) the C*-algebra of operators, admitting ad-
joint. Let GL (A) and GL*(A) denote the correspondent groups of invertible operators.
The question about the contractibility of general linear groups is very important for K-
theory to construct classifying spaces in terms of Fredholm operators. To this problem
a series of papers is devoted: [13, 7, 21, 14]. The author used these results to construct
the classifying spaces of K-theory K??(X; A) [20] which arises in analytical approach to
the Novikov Conjecture on higher signatures. In paper [2] J. Cuntz and N. Higson proved
the contractibility of GL"(A) for A with strictly positive element (or, equivalent, with
countable approximate unit = o-unital).

In the present paper we give a simple proof of the theorem of Cuntz and Higson, dis-
tinguished from original, and based on generalization of a construction of homotopy from
[17]. We also show, that the similar reasonings are aplicable to prove the contractibility
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GL (A) in some special cases, in particular, for A, being a subalgebra of algebra of compact
operators in separable Hilbert space, and for A = Cy(M ), where M is a finite-dimensional
manifold.

In the classical paper of Dixmier and Douady [3] it is proved the contractibility of the
group of unitary operators in Hilbert space with the respect to strong topology. We prove
some generalizations of this theorem to the cases of GL (A) and GL*(A) for o—unital A.
Instead of strong topology we use here the strict topology.

Acknowledgment. The author is grateful to L. Brown, J. Cuntz, M. Frank,
V. M. Manuilov and A. S. Mishchenko for helpful discussions.

2 Preliminary notes

It is known, that the set of invertible operators in a Banach space is open with the respect
to the topology of a norm, while the set of bounded A-homomorphisms is closed in the set
of all endomorphisms. Thus, GL is an open set in a Banach space. The similar argument
is valid for GL*. According to the Milnor theorem [12] such sets have the homotopy
type of C'W-compexes, and, therefore, by the theorem of Whitehead, strong and weak
homotopy triviality are equivalent for them. We have proved the following statement.

Lemma 2.1 To prove the contractibility GL (resp., GL™ ) it is sufficient to verify the
following. Let f : S — GL be a continuous map of a sphere of arbitrary dimension. Then

f s homotopic to the map to the single point Id € GL . The similar statement holds for
GL*. O

Let us produce one more reduction. To consider simultaneously case GL. and case
GL*, we shall enter a common notation: G := GL (resp., GL™), E(M) := Ends(M)
(resp., End’ (M)).

Lemma 2.2 (a variant of the Atiyah theorem about small balls) Let f : S — G be
a continuous map of a sphere of arbitrary finite dimension. Then f is homotopic to a
map f' such that f'(S) is a finite polyhedron in E(I3(A)), laying in G together with the
homotopy.

Proof: Let ¢ > 0 be such that e-neighborhood of the compact set f(S) lays in G.
Let us choose a fine simplicial subdivision of the sphere S, such that diam(f(o)) < ¢/2
for any simplex o of this subdivision. It is possible to do this, since S is compact. Let f’
be a piecewise linear map, being the extension of the restriction f to the 0-dimensional
sceleton. Thus diam(f'(0)) < diam(f(o)) < /2 for any s. For any point s € S there exists
a vertex s; € S, such that || f(s)—f'(si)|| = ||f(s)=f(s)|| < e/2and || f/(s)—f'(s:)]| < ¢/2,
hence the segment [f(s), f'(s)] C G for any point s € S. Therefore, the linear homotopy
fi(s) =tf'(s)+(1—1)f(s)is in G. Passing to a subdivision of f'(.9), we obtain a structure
of simplicial complex. O

Remark 2.3 Let us remark, that this argument is not valid for other topologies,
which we shall consider. For example, with the respect to the strong topology on oper-
ators in a Hilbert space, the sequence Id, converges to Id, where Id, has the matrix
diag(1,...,1,0,0,...) (unit up to n-th place). So that with the respect to this topology
the general linear group is not an open set.



One more step from the original work of Kuiper [9] is universal. Let us denote orthog-

onal (A-Hilbert) sum by & and Banach one by D.
Lemma 2.4 Subset V C G, defined as

V= {g S g|g|H' = IdH'7 g(Hl) = H1}7

where

lQ(A):H/@Hl, H/ng ng(A),
is contractible in G to 1 € G.
Proof: Let us represent ' as
H/:HQ@H:))@..., Hzglz(A),

so that [2(A) = H1 & Hy® Hs@ . . .. The matrix of g with the respect to this decomposition
has the form

m(1,1)=u=glg,, m@,i)=1€&H,),i>1, mli,j)=0,1#j,
g = diag(u,1,1,1,...) = diag(u, v u, L, u " u, 1,...).
We want so to define a homotopy ¢; € G, t € [0, 7], in such a way that
Jgo = ¢, Grs2 = diag(u,u™  u,uu, . L), gr = diag(1,1,1,...) =1d € G.
For this purpose let us put for ¢ € [0, 7/2]
mi(1,1) = u,

for:>1

me(20 4+ 1,20) my(20 + 1,204 1)

[ cost —sint uw 0 cost sint w0
“\ sint cost 0 1 —sint cost 0o 1/

my(r,s) =0 for remaining r, s.

Let us put for t € [7/2, 7]

( me(20 — 1,20 — 1) my(2i — 1,2i) ) B

[ cost —sint ul 0 cost sint v 0
T\ sint cost 0 1 —sint cost 0o 1)’
my(r,s) =0 for remaining r, s. O



Lemma 2.5 Subset W C G, defined as

W={geG|glw=1dn},

where

lQ(A):H/@Hl, H/ng ng(A),

ts contractible inside G to
V={9€Glglg =ldn, g(H) = H}.
Proof: With the respect to the decomposition l5(A) = H' & Hy we define a homotopy

by the formula
_ (1 Bls)1=1)
fi(s) = ( 0 v(s) ) :

Ft(s):((l) 5(1_”).

v

be the inverse to ( L B ) Then

3 1
~y 0

@ ¢):(¢+ﬁx ¢+ﬁ§):(1

X ¢ X vé 0

whence

v =1, x =0, vE=Ey =1,
B4y =0, Y+ BE=0,

and

((1) ¢<1§—t>) ((1) ﬁ(lv—t)) _ ((1) ﬂ(l—t>+<1—t>m) L (1=1)-0

Sl 0 1 ’
((1) ﬁ(l’Y_t)) ((1) ¢<1§—t>) _ ((1) ¢<1—t>$§@5<1—t>):(é <1—1t>-0),

Hence, the homotopy lies in G. O

3 Technical lemmas

Let by K4 be denoted the C*-algebra of A-compact operators on [3(A), by LM(K4) =
Endals(A) the algebra of the left multipliers, by M(K4) = End}l2(A) the C*-algebra
of multipliers and by QM(K4) = End4({2(A),l2(A)’) the space of quasi-multipliers (see
[1, 11, 6, 8, 16, 18]).

Let « be a strictly positive element in o-unital algebra A, «; := ¢;(«) be a countable
approximate unit, where @; has the graph
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wi = (o — 1)V mast 0 > 3w wy :oé/2
wjozi:oziwj:(), ]:Z—I-Q,Z—I-g,, Wil = Wy = Wy, jzl,...,i—l. (1)

Since there is no unit in A, the notion of “standard base” {e;} of module [3(A) makes no
sense. Nevertheless, it is possible to define properly elements e;v for any v € A, namely,

ey :=(0,...,0,7,0,...), ~ at i-th place.

Let us denote the correspondent orthoprojections on these one-dimensional submodules

E; by Q.
Lemma 3.1 The injection i : A — [5(A), defined by the formula

T Z ER(i)Wi E(1) <Ek(2)<k3)<...,

remain the inner product and admits adjoint. In particular, the image Im1 is defined by
a selfadjoint projection of the form
p=1". (2)

Proof: First of all,

(ix,iy) = (Sier@wit, Xy x(wil) = il Cr@wil, ex(ywily) =
= waww—xy—Qy%

Let us consider operator ¢ : [3(A) — A of the form
t(z):= Z ()Wis 2 szzk

This series satisfies to the Cauchy criterion: if number m is so great, that
> 2z <6,
i=m+1

then

HZW% \<!\Zw2H1/2 HZZk ol <14

The same reasoning for s = 1 implies the relation ||t(z)|| < ||z]|. Also, (iz,z) = (x,tz),
e, t=1"



Let us consider arbitrary elements z,y € A. Then
(ix)y = (Tix,y) = (ix,iy) = (x,y) = 27y.
Since y is an arbitrary element, we conclude, that 11z = x and *¢ = Id . Hence,
1wt =0,

i. e., p is a projection. Since i*i = Id, ¢* is an epimorphism and Imi¢ = Imp (see also [10,

Sect. 3]). O

We need some more strong variant of this lemma.

Lemma 3.2 The injection J : [3(A) — [3(A) under the formula

(a1,ag,...) — ZZ%% (vij, vij) = w?, vij € M5,
K

ZQ(A) =M M F.... M, :{(0,...,O,GS(,,),...,as(r+1)_1,0,...) },
(e(1, 1) k(1,2), (2, 1) B(1,3), k(2,2), (3, 1)} = {1,2,...,

remains the inner product and admits an adjoint. In particular, the image is defined by a
selfadjoint projection of the form JJ*.

Proof: Let « = (ay,as,...) € [5(A), y = (b1, bs,...) € [3(A). Then

(Ja, Jy) = (X; X vija;, ;3 vijhj) = 3, 5 afwib; = 5 a5 (3, w]) b =
= ja;bj = (x,y).

In particular, J is bounded. Let us consider operator T : [3(A) — [3(A) of the form

T(z) = (ti,l2,...), L= (v, 2).

7

For this series the Cauchy criterion is carried out: let number N = N(z) be so great, that

(1 — pn)z|| < § and m be so great, that s(k(m, 7)) > N (j is fixed), (by [18])

£t

=m

1/2

I3l = (3 v (1= e | <

For any r by [18] the following inequality holds

r

Z<vij72>*é vij, 2 <va% > <vaq] > (452, 4;2),

=1

where g; is the orthoprojection on @; My ;). Hence

t;tj < <QJ27QJZ>7 <T(Z)7T(Z)> < <sz>

So, T'is bounded, and the fact, that it is the adjoint for J is obvious.
The proof of the second statement literally repeats the reasoning from the previous
lemma. O



Let us consider an operator F' € GL. Then, with the respect to the standard de-
composition [3(A) into the direct sum of E; = A, the operator F' has a matrix FJZ
with the elements from LM(A). If FF € GL~, FJZ € M(A), since (F*); = (Flj)*. Let
us note, that for any b € A and any F' € GL holds ||F}, (b)|| = 0 as i — oo, because
{F,,(0)}2 = F(em,b) € l5(A). For F' € GL” holds ||[F/"(b)|| — o0 as j — oo as well, as

it is proved in the following lemma.

Lemma 3.3 For any F' € GL*, ¢ > 0 and ey there exists a number m(k), such that
for any m > m(k) and p € A with ||¢|| <1 holds

[ew, Feme)|| <.

Proof: Let us consider the bounded operator F*. Since F*epy € [3(A), there exists a
number m(k), such that

10 = pog) el <20 @uF el <e. (m > m(k).

Hence,
[(erys Femp)ll = |1QmE e[ - el <&, (m>m(k)). O

4 Proof of the Cuntz—Higson theorem
Lemma 4.1 Let F, € GL*, r = 1,..., N, be arbitrary operators, and ¢ > 0 be any

number. Then we can choose such increasing non-intersecting sequences of natural num-

bers i(k) and j(k), that

1 €
H(]‘_p](s))Fre O{k”<4 25 2k7 S_kk—l_]‘? 7":17 “7N7 (3)
1 € L
| (F ey, €55y 008) || < TR s=1,...k—1, r=1,...,N (4)

Proof: Let us take i(1) := 1. Let us choose j(1) > (1) in such a way that

1 €
(1 _pj(l))Fre 041H < - r=1,...

N.
4 212U

Y

Let us discover ¢(2) > j(1), such that (in the correspondence with Lemma 3.3)

1 €
|[(Freiyaz, ejayan)|| < = 5 51,92 r=1,...,N.
Let us now choose j(2) > i(2), such that
1 €
H(]‘_p](z))Fre O{k”<4 22 2k7 k:]‘727 rZ]‘?“‘?N?
and such ¢(3) > j(2), such that
1 €
| (Freizyas, €5(s) oz5>H<2 TS s=1,2, r=1,...,N.

7



Let us continue the process by induction. Let ¢(1),...,i(k — 1) and j(1),...,5(k —2) be
already found in such a manner, that the conditions (3) and (4) hold for them. Let us
find j(k —1) > i(k — 1), such that

1 €
(1 = pjk—1)) Fr€igmyam|| < 1 g ™m=L..k-1 r=1...N,
and after that let us find ¢(k) > j(k — 1) in such a manner that
1 €
|(Freieyar, €jsycs)|| < 3 3.8 s=1,...k—1, r=1,...,N.

By induction we obtain the required statement. O

Let us define now embeddings J and J’ similarly to the constructions in Lemma 3.2.
For the definition of J we shall take some of ¢; o w, as vectors vy;, but so that g =
g(s,7) > s+, g > s, whence e;na,ws = €jgw, and (vs),v,;) = w?. Let us define
similarly v}, for J', but taking e;) instead of e;y. From the conditions (3) and (4) we
obtain

ICEvst, U ) | = N € (5.00) Qi (5.60%s5 €5(hnm)) Qhnam)@n) | S N1Q(h(mam) Fr€itg(s,) (sl <
1 €
< = pighnam)—1)) Fr€igg (s Qa(sn |l < 1 o195 h2>g r=1,...,N. (5)
, 1 €
1 (Evst, V) || = I[{E - €ig(s,) Qg(5,6) s > €5 (nim ) X (mym)wn) || < RETITL
h <g, r=1,...,N. (6)

Let us denote by P and P’ the correspondent orthoprojections. Then PP' = P'P = 0.
Let & = (ay,as,...) and y = (b, by, ...) be arbitrary vectors from l3(A) with the norm 1.
Then for any r =1,..., N by (5,6)

<

H<F7»J$,J/y>H = H<ZZF7’U575Q757ZZU;mbm>
t s m n

< Z( S B+ X H<Fwst,v;m>u)s

h(n,m)>g(s,t) h(n,m)<g(s,t)
S
< Z 2h(n,m) . 2g(t,s)

t,5,n,m

<e,

since h(n,m) > n+m, g(t,s) >t + s by the construction. From this we obtain
|P'F.P| <e, r=1,...,N. (7)

As it was shown in Lemma 2.2, it is sufficient to know how to construct a homotopy of
picewise-linear map with the image in a finite polyhedron in GL* with vertices Fi, ..., Fix
into a map in a compact set {D(x)} C GL*, such that

PD(z)=D(x)P=P Vzebs.



For this purpose we can apply a homotopy of Neubauer type (see Section 7). By (7)
we have to take care only of that, we have an operator Hy : P'(I2(A)) — P(l2(A)),
such that operators HoP' and H;'P admit adjoint. Let us assume Hy = JJ™. Then
HoP' = JJ*J'J* = JJ*, where J™ is an isomorphism P'(I3(A)) — [3(A), and J :
[5(A) = P(lx(A)).

We have proved the following statement.

Theorem 4.2 [2] Let A be a o-unital C*-algebra. Then GL*(A) is contractible with
the respect to the norm topology. O

5 The case A C K

Let algebra A be (for some faithful representation) a subalgebra of algebra K of compact
operators on a separable Hilbert space H. Under these restrictions we can prove the
following statement.

Lemma 5.1 Let a,b € A, (f1, f2,...) € 5(A). Then
|laf:b|| — 0 (1 = o0).

Proof: Since ¢* € K, for any ¢ > 0 we can find a number N = N(¢) and base hy, ha, ...
in H, such that
€
Va' || < ————— Hy =spang(hy,..., h Hyy = H:
HpN H QSuprZH7 N p C< 1, ) N>7 N N>
pn and piy are the correspondent projections. Since [5] the partial sums of series Y; f; f*
form an increasing uniformly bounded sequence of positive operators in B(H), fifF is
strong convergent to the zero operator. Hence, for any h € H

[f7Rl = (fTh, [PR) = (fifTh, ) — 0.
Thus, f7 is strong convergent to 0. Let 1o be so large, that

K3

| fipn] <
2H |

for ¢+ > 1¢. Then

lafill = W fepwa| + Wi pval < g el + U g

2H I HfH -

Let us remark, that similar properties for matrix elements themselves (which belong
LM(K) = B(H)) are not valid even for operators from have not GL*. Moreover, the
following example shows, that all matrix elements can have the norm 1.

Theorem 5.2 The group GL (A) is contractible with the respect to the norm for A C
K.

Proof: Since Lemma 5.1 is the analog of Lemma 3.3, the proof can be obtained by
the literal repeating of the reasoning from Section 4. O



6 Some other cases

Definition 6.1 Let us tell, that C*-algebra A has property (K), if for any functional
f:l(A) = A any ¢ > 0 and any a € A it is possible to find a vector « € l3(A), such
that

If(@)l <&, (z,7) =d"a

Definition 6.2 A (*-algebra A has property (E), if for any functional f =
(fiseooyfuy.o.) € I5(A) and any ¢ > 0 it is possible to find a another functional
g=1(91,--.,9n...) €l4(A) and a number k € Z, such that

If—gll<e,  fi=g, i=k+1, k+2,...

and ¢|z, : Ly — A is epimorphism, where L, ={ (a1,...,a,,0,0,...) }.

Example 6.3. Let A be the algebra of continuous functions on a smooth n-

dimensional manifold M. Then A has the property (E) (with k =n + 1).

For the proof of the following theorem we need

Lemma 6.4 Let M be a Hilbert module, x € M, (x,x) > a >0, ||a|| < 1. Then one
can find an element y = xb, ||b]| < 1, such that (y,y) = a*.

Proof: Let us put

This (norm) limit exists, as

1 -1/2 1 -1/2 1 -1/2 1 -1/2
(EEREEI N AT E

n m n m

1N\ —1/2 1\ -1/2 2
< (’H—) —(’H—) ] 7 =0,
since for any non-negative z holds
22 22 B %22—%22 _(1 1) 22 < 1 1
Z—I—% Z—I—%_(Z—I-%)(Z—I-%)_ m n (Z—I—l)(z—l—%)_m n

Also ||b|| <1, as

I I
a<’7+—) a§a1/2’7<7+—) a'?<a<l.
n n
The condition (y,y) = a* is obvious now. 0O

Theorem 6.5 The property (E) implies the property (K).

10



Proof: We can suppose ||a|| = 1. Let us consider an arbitrary functional f = (f1,...) €
I5(A) and € > 0. Let g and k be as in the condition (E) with the respect to /2. Let us
put f:= f|LkL. Since L = [5(A), by (E) there exists a functional ¢’ : L+ — A, such that

I/ =gl <e/2, fi=gi=g, i=K+1LKE+2...

and g’|LkLnLk/ is an epimorphism. Then the functional

h::{g on Ly;

g on Ly,

satisfies to conditions: || f — k|| < ¢, h is an epimorphism on Lj and L N L separately.
Without loss of generality it is possible to suppose, that ||h|| = 1. Let @ € L; and
y € L N Ly be such that h(z) = h(y) = a. Then h(xz —y) = 0, and by [18]

a’a = (h(z),h(z)) < (x,2),  a’a=(h(y),h(y)) < (y,y)-

By Lemma 6.4 it is possible to find b, such that |[b]] < 1 and z = (z — y)b satisfies
(z,z) = a* Thus h(z) = h((z —y)b) =0, and as ||z|| = 1, ||f()]| <e. O

Remark 6.6 Let ¢ and ¢’ be enclosures admitting adjoint and respecting inner prod-

uct, and for the correspondent projections ¢ = #* and ¢’ = "i"* we have |[¢¢'|| < e,

ld'ql] < e. Let us remark, that ¢¢' = *i"s’*, where ¢ is an isometric enclosure and 7™

is an epimorphism with norm 1. Therefore, the indicated inequalities are equivalent to
|o*¢'|| < e, ||i"]| < e. Then the map [ := (¢,¢") : [2(A)Bl2(A) — [3(A) is also an enclosure,

NES

admitting adjoint [*(x) = (¢*(x),i*(x)). Really, I*, given by this formula, is continuous

and
(I(z,y), 2) = (i(x) +4'(y), 2) = (2,5°(2)) + (y,i"(2)) = {(2,9), ["(2))-
Also,
M (z,y) = ("(iz +'y), " (ix +1'y)) = (2,y) + ("y,i"iz),
so that

IId — I*]|| < 2¢ (3)

and [*[ is invertible. Therefore, I is an enclosure. Let us remark, that for this reasoning
we need to have e < 1/2.

Theorem 6.7 Let algebra A have the property (K). Then the group GL (A) is norm
contractible.

Proof: As above, it is necessary to prove a statement, similar to Lemma 3.3. In
the present situation we argue as follows. Let Fy be the first row (i. e., a functional) of
matrix /' with the respect to the standard decomposition l3(A). Let us remark, that any
vector from [3(A) with any beforehand given exactness ¢ belongs to L, for a sufficient
large n = n(e). Hence, applying the property (K), it is possible at once to suppose, that
x € L,. Really, let f(x) < /2, (x,2) = a < 1, ||f]| = 1. Let us find a number n, such
that ||(1 — pn)z|| < e/4, @' := pyx. Then (¢/,2') < (x,2) = a and

if o= ((x,z)— <:1;',:1;’>)1/2.

11



Let us put y := 2’ 4+ e,410. Then (y,y) = a, y € L,41 and

LEI < MA@+ I =)+ £ =) < 5+

5 +

€
- =¢c.
4

= o

By applying the property (K) infinitely many times with constants, decreasing as geo-
metrical progression, we can find a sequence of vectors x; € [5(A), satisfying to conditions

€; € Mi? ZQ(A):Ml@MQ@, MZ':{(0,...,O,Gk(i),...,Clk(H_l)_l,O,...)}, (9)
(v, 2;) = ay, a; — approximate unit for A, (10)

e 1
1Fi(e)l < 5o (1)

Let us remark, that for & > k(i) :  w; = oz,lg/2 d(i, k), ||d(i, k)|]| < 1. Therefore, similar to
reasonings above, the map

J1a(A) = 1(A), (a1, aq,...) — szk (5.5) (1,7))a;,

where

B(1,1); k(1,2), k(2,1); k(L. 3), k(2,2), k(3,1);.. ..

is some increasing sequence, will be an enclosure admitting an adjoint and preserving the
inner product. If we denote Hy := Im.J;, then by (11)

&
Il < <.

Let GGy be the orthogonal complement to the image of the first copy of A under J;. Let
m(2) > m(1) :=1 be so large, that ||(1 — p2))Fy(1)| < /2, where y; := Jy(a 1/2,0, cl)
Let us denote by F, the restriction of the m(2)-th row of the matrix F' on G = [5(A),

and let us find by the same algorithm a new enclosure J,, such that its image equals to
H; and there exists a correspondent submodule Gy C H,, and

Bl < 5
Let m(3) > m(2) be so large, that
£ . 1/2
(1 = pmay) Fluill < 20 1=1,2, Yo := Jo(ay' ", 0,...),
€ :
(L = prgs))yil| < 20 i =1,2.

And so on. We obtain sequences m(j) and y; such, that
& . .
(L = P )FyZH< o0 i=1,...,5—1, (12)
€

=1, (13)

12



& . .
HQW(J)FyZH < ﬂ? J = 17"'7Z7 (14)
Again, using w;, we can arrange an enclosure J of the module [3(A) on a submodule
H of the linear span of y; and an enclosure J' of the module [3(A) on the submodule
H' := @, F,(j). Since these modules are c-ortogonal, there exist mutually vanishing
projectors p and p’ on them. More precisely, let us remark first of all, that the enclosure

J admits adjoint. Really, the image of each vector (ay,as,...) under J; is a sum of the
form

DD visas, (v vg) =@l vy € My,

;i

For construction of the higher J; the correspondent vf; will lay again in direct sums of
modules M., and for v}, these sets are not intersecting. We can apply Lemma 3.2. The
operator J will is defined by the formula

J:(ar,az,...) —~ Z valas, valas = Ygflsls. (15)

Hence, there are the orthoprojections ¢ and ¢’ on H and H’, correspondently. Let us
remark, that from this reasoning we can make the following refinement. We, in particular,
have shown, that for any J; and any m there exists no more than one r, such that
QmJsQ, # 0. Therefore, throwing out if necessary, a finite number of canonical summands
in [3(A) and restricting J; on the remaining module, we can suppose, that

Qm)Js =0, g=1,...,s—1, (16)

Qm(])yl = 07 .] = 17"'7i7 (17)
Also, ||¢q|| < e, ||¢'q]| < . Really, let us consider a vector of the form

= szfﬂs =D Ysllsts, 1> akas|| < 1.

It is necessary to show, that ||¢'z| < e. It follows from (13, 17):

<y

S

+2.0°

5 j<s

Hq/xH = ZQM(]) (Z Uflas) QM(j) (Z Uflas) <

i>s

> Qmi) 2D vhas
j 5

<M H(l — DPin(s))Yshtsls

DN ESW-E
s j<s s

Since the projections g and ¢ are self-adjoint, we obtain and second estimation.

Then by Remark 6.6 H@H' is the image of an enclosure, admitting adjoint, and by [15]
the decomposition ly(A) = HOH' @& (HY N H'') takes place. Let us denote by p and p/
projections on H and H' correspondent to this decomposition, so that pp’ = p'p = 0.

Thus

lp—qll <3¢, ' =dll <3e,  pll <143e<2,  [pl<l+3e<2 (18)
Really, let € HOH', ||x|| = 1, so that x = IT*Iy, and by (8) |[Iy|| < 2(1 + &),
l(p=a)zll = (p— )" Ly + " Ty)| = (= a)g+ )yl = | - aq'Iy|| < 2e(1+¢) < 3e.

13



Besides, ||p’ Fp|| < 7||F||e. In fact,
1P Epll = (0 — ¢V Fp+ ¢ Fpll <3<||F|| +1|d Fpl|,

and by (18) it is sufficient to prove, that for « € H, ||z|| < 1, holds ||¢'Fz| < 2¢. Any
such vector x can be presented as

szfﬁas =D Ysthsts, 1> akas]] < 1.

Then

lg' Fae| = =<

> Quiy 22 2 Foias
J I

+2.2

5 j<s

Y Quey Fviy <

i>s

Qm(j)F (Z Ufﬂs)

e

£
+ZS:JZ<;2J'-25 gzsjgﬂzzg.

Let us remark, that similar statement we can receive not only for one operator F
(actually for two: F' and Id ), but for a finite collection (vertices of a simplicial complex):
FO_ . FWN)_ For this purpose it is necessary to conduct reasonings for F' = F(1) with a
constant & and to receive projections P; and P!. Then apply algorithm To P{F® P, and
receive projections P, and P,, such that

<Yy

7

<3| = P Fyspisas

P{PQIZPQ/P{:PQ/, P1P2:P2P1:P2, P2P1:P1P2:0,

|PLFIP|| < e, ||PAFAP| <.

And so on. This completes the proof, since now it is possible to apply the Neubauer
homotopy. O

7 Neubauer type homotopy

In this section we describe, how to modify the homotopy from [17] for our purposes.
Though we work with completely other objects, the construction in [17] is so universal,
that proofs can be transferred almost without modifications.

Lemma 7.1 Let M be a Hilbert A-module , X be a topological space, T : X — G =
G(M) be a continuous map, and P and P’ be projections from € = E(M), such that

PP =PP=0, Hy:PMXPM, H/Pe& H'PcE,

P'T(z)P =0 Vaoe X.
Then there is a homotopy T ~ D in G, such that

PD(z)=D(z)P =P VzelX.

14



Proof: Le us put Q :=1d — P, Q" :=1d — P,
P(x) :==T(x)PT(2)"'Q’, Qx) := Q" — P(a).

Then P(x) is a projection on T'(x)PM and there is the decomposition into projections
Id = Q(x)+ P(x)+ P, and Q(x), P(x) and P’ are mutual vanishing for each x. Really,

QT(x)P = (1d — PYT(2)P = T(a)P. PT(a)"QT(2)P = P.

T(x)PM C Ple)M CT(x)PM,
P(2)P(x) = T(2)PT(x)" (Id — P)T(2)PT(2)7(Id — P') =
T(x)PT ()" T (2) PT ()" (Id — P') = T(2) PT(2)"(Id — P') = P(x),
Qz)+P(x)+ P =Q —P(x)+ P(z) + P =1d,
P(x)P' =T(x)PT(x)'(Id — P")P' =0, P'P(z) = P'T(x)PT(z)"Y(Id — P") =0,

Hence, P(x) + P’ is a projection, whence Q(x) =1d — (P(x) + P’) is a projection too.
Let us define
H = —HyP' + H;'P,

then, as P'P = PP' =0, P'Hy = PH;' = 0 and
H? = (—=HoP' + Hy'P)(—HoP' + H;'P) = —(P' + P),

HP'H = (—HoP' + H'PYP'(—HoP' + H'P) = — HyP'H'P = — HoH' P = —P,
Q'HP = HP — PPHP = H;'P — H'P = 0,
QHT () "Pla) = QHT () T () PT () Q' =,
P(x)T(x)HP' = T(2)PT(2)'QT(x)HP' = T(x)PT(x)'(1 — PYT'(x)(—HoP') =
= T(2)PT(z)"'(1 — P"YT(z)P(—HoP")
= T(x)PT(z) 'T(2)P(—HoP") = T(z)P(—HoP") = T(z)HP'.

Let’s assume

G(x) = HT(Q?)_LP(J}) + T(x)HP',

Then
G(a)? = (HT(x)™"P(a) + T(x) HP')(HT (x)" P(a) + T(x)HP') =

= HT(x)" P(x)HT (x)""P(x) + T(x)(=P)T (:L') P(x)+
FHT (2)""P(2)T(x)HP' + T(x)HP'T(2)HP' =
= HT ()" T(2)PT(2) " Q'HT ()" P(x) + T'(x )( P)T(x)"'T(2) PT(2)7' Q"+
FHT(2) " T(x)HP' + T(x)HP'T(z)HP' =

= 0-T(2)PT(2)"' Q"= P'+T(2)(=HoP")T(2)(— HoP') = 0—P(2) = P'+0 = —(P'+P(x)),
G(x)Q(x) =0 Q(a)G(z) = (Q" = P(x))(HT (2)™'P(x) + T(x) HP') =

= QHT(z)""P(x) + (Id — P)T(x)(=PHoP') = P(x)HT ()" P(x) — P(2)T(z) HP' =

= 04T (2) HP'—(T(2) PT(2)"'Q")(— Ho P'+ Hy ' P)T ()" (T () PT(2)"'Q") =T (2 ) H P’ =

15



= (T(2)PT(x)"'Q"Ho[P'PIT (2)7'Q")~
~T(x)PT(2) ' [Q P H;' ' PT(x) (T (z)PT(x)'Q") =0
Hence, for
Uls,a) i= Qa) + (1 = 5)(P(2) + P') + 5G(x)
we obtain

Uls,z)™ = Q(x) + 1 7 (1= 5)(P(z) + P') — sG(x)).

P Cp
Therefore, U(s,x)T () defines a homotopy in G

U0,2)T(z) =1d o T(z) ~ U(1,2) o T'(x).
Thus, as P(x)T(z)P = T(x)P,

V(L) T@)P = Q)P T ()P + Gla)P()T () P =
0+ HT(z)""P(x)T(2)P = HT (2)™'T(x)P = HP.

Since H(P+ P')=(P+ P')H = H, for
V(s):=QQ + (1 —s)(P+P')—sH

we have

-1 _ / 1
V)" =@ gy

Besides, V(0) = QQ" + P 4+ P’ = 1d. Therefore, the following homotopy is defined
R(z) :=V()ULz)T(z) ~U(L2)T(x) &  C(X,G(M)),

[(1—s)(P + P') + sH].

and R@)P = V(1)U(L,2)T(x)P =

V()HP = QQ'HP — H*P =0+ (P+ PP =P.

Let us put
R(s,z) := R(x) — sPR(x)Q.
Let for some e € M the equality R(s,x)e =0 hold. Then
0= R(s,x)e=R(z)(P+Q)e—sPR(x)Qe = Pe+ R(x)Qe — sPR(x)Qe,
0=QR(s,x)e = QR(x)Qe.
Let f = PR(x)Qe, so that f = Pf. Then
PR:)(Qe—Pf) =~ Pf=0,  QR(x)Pf=0.
Therefore, R(x)(Qe— Pf)=0,Qe=Pf =f=0and PR(s,z)e = Pe =0, e =0. Also
Rz M =M, R(x)P=P, QR(z)QM =QR(x)(1—-P)M =QR(x)M = QM.

Therefore, with the respect to the decomposition M = PMGQM the operator R(s,z)
has the matrix

Id *
hence, R(s, ) is an epimorphism, and R(s, ) € G(M) as an epimorphism without kernel.

It is sufficient to put D(z) := R(1,2). O
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Lemma 7.2 Let M be a Hilbert A-module , Xbe a compact set, T : X — G(M) be
a continuous map with 0 < & < min ||T(x)~Y|™",, and P and P’ be such projections from
E=EM), that
|P'T(z)P||<e VazelX.

Then there exists a homotopy S(s,x) in G, such that
S(0,2) =T(x), P'S(l,z)P=0 VazeX.
Proof: Let us put S(s,z) := T (x) — sP'T'(x)P. Since
I8(s,2) = T(@)]| < <,
S(s,z) € GM). O

8 Dixmier-Douady type theorems

Let us realise [3( A) as the completion of the algebraic tensor product H@ A = L*([0,1])s A
completed with respect to the A-inner product (f @ v, @ 8) = (f,g) 7" 3. We suppose
here that the inner product on L*([0,1]) is linear in the second entry.

Lemma 8.1 [3, p. 250]. There exists for each t € [0,1] a closed linear subspace H; C H
and for each t € (0,1] a linear isometry U, : H, — H such that

(i) the orthogonal projection Py onto Hy is strong continuous in t € [0, 1],
(ii) the operators Ui P; and U ' are strong continuous in t € (0,1],
(iii) Hy=H, Hy=0, Uy =1. O
Let us remind that in [3] the subspaces are defined in the following way:
Hy={f e L*([0,1])| f(z) =0 for x>t}

Lemma 8.2 If F; — F, t — 0 with respect to the strong topology in B(H), being
bounded, then I, @ Id 4 — F @ Id 4 with respect to the left strict topology.

Proof: It is sufficient to prove that
|(Fi@1dgs— F®@Id4), || =0 (t —0),

where
N
O,0(2) =a(y,z), x= Zhﬂ?i @B, w,€C,BeA |zf=]yl=1,
i=1
and {h;} is an orthogonal basis of H. Then for z =3, h;z; @ p;
N
[(Fr@1da = F@1da) by (2)]| = | 2(F = F)hizs @ Bily, 2)||
=1
1s less then ¢ if ¢ 1s so close to 0 that
1
I, = )il - (|5 < e B
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Lemma 8.3 Let a set G(t) be uniformly bounded (by a constant C'), G(t) — G and

S(t) = S (t — 0) in the left strict topology. Then G(t)S(t) — GS (t — 0) in the left
strict topology.

Proof: Let k € K4 be an arbitrary operator. Then Sk € K4 and

|S(t)k — Sk|| — 0, I(G(t) — G)(SE)|| =0 (t —0).
Hence
IG()S(t)k —GSk|| < |[(G() — G)Sk + G()(S(1) — S)E|
< G() = G)Sk|| + Cl[(S() = S)k|| =0 (1 = 0).
O

Theorem 8.4 The unitary group U of operators in [3(A) is contractible with respect
to the left strict topology.

Proof: For any U € & and t € (0, 1] we define
(I)(U,t) = (Idl2(A) — Pt X IdA) + (Ut_l X IdA)U(Ut X IdA) (Pt X IdA)
and
®(U,0) := U.

The operator ®(U,t), t € (0,1] defines an identity mapping H} @ A and coincides with
the restriction of the unitary map (U;' @ Id 4) U (U; @ Id 4) on H; @ A. Therefore

®(U,t)el, &(U,1)=U.

Thus, as U = U; ', so all operators admit an adjoint.
From Lemma 8.3 it is clear that @ is continuous in ¢ € (0, 1], and, similarly, in (U, ).
Indeed, let (U’ t') € U x (0,1] tend to (U,t) € U x (0,1]. Then for any k € K4

|®(U, 1)k — O(U, ¢")k|| = ||(Id 1) — P @ 1d )k + (U7 @ 1d 4) U(U; @ 1d 4) (P @ 1d 4)k
—(Id 4y — Pr @ 1Id a)k — (U7 @ 1d 4) U (Up @ Id 4) (P @ Id 4)K||
<P @Idy— Py @1d 4 )kH + H[(U—l @Id 4) = (U @ 1d )| U (U; @ Id 4) (P @ 1d 4) k||
+H( "@1d4) [U-UNU, @ 1d 4) (P @ 1d 4)k|
HI(U @ Id ) U [(U; @ 1d 4) — (Up @ Id 4)] (Pr @ 1d 4) k||
(U7 @ 1d 4) U (U @ 1d 4) [(Pr @ Td ) — (Py @ 1d 4]
<P @lda—Prald )kl + (U7 @1da) — (Ug" @ 1da)] k| + [|[[U = U k|
(U @ 1d 4) = (Up @ Id a)] ksl 4+ [[[( £ @ 1d 4) = (P @ Id 4)]E[] = 0

by Lemma 8.2. Here ky, ks and ks are fixed operators from K 4. Let now (U’ ") € U x (0, 1]
tend to (U,0) € U x[0,1]. Then Py — 0 with respect to the strong topology, Py@1d 4 — 0
with respect to the left strict topology by Lemma 8.2. Therefore for any k € K 4

I(U' @ 1d ) U Uy @ 1d ) (Po © Td 4) k|| < [(Pr @ Td ) K| — 0, [|®(U,D)k| — 0. O

Let us remark that in the proof of Theorem 8.4 we used only the boundedness of the
set of invertible operators {U}, but not the unitarity. Thus, actually we have proved the
following statement.
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Theorem 8.5 Fuvery bounded set of invertible operators in Hilbert space H is con-
tractible in invertibles with respect to the strong topology.
Fvery bounded set of invertible operators from GL (resp. GL*) is contractible in GL
(resp. GL™ ) with respect to the left strict topology. O
Lemma 8.6 Let S be a compact set and
f:5— B(H), s Fy
be continuous with respect to the strong topology. Then {||F||} is bounded.

Proof: As S is compact, so {|[Fsz||} is bounded for any « € H by some C(x).
Therefore, by the uniform boundedness principle [4, 11.3.21] there exists a constant C
such that

| Fsx|| < C, vV oseS, x€ Bi(H).

Therefore || Fi|| < C. O
Lemma 8.7 Let © € M be an arbitrary element. Then there exists z € M and
k=0,,€K(M) such that v = kz.
Proof: Let us put
U £ 1/3y—1
ui=0v:=2z2 .—lg%x(s—l—@,@ )7

As s*(e + s)7! is uniformly convergent to s on bounded sets, so in order to prove that u
is well-defined we should remark that for ¢t = (x, x) one has

(@ (e + (,a) ) = (u+ (e, 2) ) e (e 4 (2, e)P) 7 = (o (e, 2) )7
= [(e+ 17 = (1) + )7 = (u+ )7
— [(5 + tl/S)_l _ (M + t1/3)_1]2(t1/3)4.
The same argument shows that + = kz. O

Lemma 8.8 Let S be a compact set and
f:9 = Endala(A) = LM(K,), s F
be continuous with respect to the left strict topology. Then {||Fs||} is bounded.

Proof: Let © € [3(A) be an arbitrary element. Let us choose k& € K and z so that
x = kz by Lemma 8.7]. Then s — Fa is continuous: we apply the definition of the left
strict topology to the inequality

[Py — Faall = || Fykz — Fikz| < || Pk — Fobl] 2]
The proof is finished similarly to 8.6. O

Now from Theorem 8.5 by Lemma 8.6 and Lemma 8.8 we obtain the following state-
ment.

Theorem 8.9 The group G(H) of invertible operators in a Hilbert space H is weakly
contractible (i. e. the homotopy groups m;(G(H)) = 0) with respect to the strong topology.

The group GL (resp. GL™) is weakly contractible with respect to the left strict topology.
O

Remark 810 We suppose that the results of this section in the part, concerning
Hilbert spaces, were known earlier, but we have not found them published anywhere.
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