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The main purpose of the present paper is the proof of a Dixmier-Douady type theorem for the Hilbert
module {3(A) and also a new simple proof of the Kiper theorem for Hilbert modules (Cuntz-Higson
theorem). The remaining results are preparatory.

In the first section we remind some general properties of algebras of the left, double and quasi multipli-
ers. We also explain how to construct out of a Hilbert C*-module (see [27]) some W*-module possessing
a number of useful properties.

In the second section algebra of multipliers of the algebra (M) of A-compact operators in Hilbert
A-module M is identified with the algebra End*(M) of bounded A-operators on M admitting an ad-
joint [13]. Then the similar identifications [17] will be carried out for the algebra of left multipliers £ (M)
and the algebra End(M) of all bounded A-operatorors on M, and also for the space of quasi multipliers of
K (M) and the space Hom(M, M), where M’ is the module of bounded A-functionals on M. Obtained
identifications allow to describe equivalent inner products on Hilbert modules [9, 17].

By describing an explicit form of various strict topologies in the context of our work, we prove weak
contractibility of the group of invertible elements of End(l2(A)) with respect to the left strict topology
for an arbitrary o-unital algebra A.

As an illustration, a representation of spaces of operators in the Hilbert module I3 (C(X)) as sets of
bounded operators in I3, continuous in different topologies [9, 1], is considered in the third section.

In the fifth section we prove contractibility of the group of the invertible elements of End” (I5(4)) with
respect to the uniform topology [3]. Our proof is based on a generalization of Neubauer homotopy [26]
obtained at the end of the section. It appears that the developed method allows to prove contractibility
of the group of invertible elements End(l2(A)) for some classes of algebras.

The author expresses deep gratitude to V. M. Manuilov, A. S. Mishchenko, and M. Frank for useful
discussions. Many problems, this work deals with, were considered also with L. Brown, A. A. Irmatov,
J. Cuntz, R. Nest, Yu. P. Solovjov.
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1 Multipliers and first structural results

1.1 Extension of Hilbert C*-modules by the enveloping W*-algebra

Construction 1.1.1 Let A be a C*-algebra, A** be its enveloping W*-algebra, M be a Hilbert A-
module. Let us consider the algebraic tensor product (over the field C) M @ A**. Tt is possible to equip
this tensor product with a structure of a right A**-module by the formula (z ® a) - b := 2 ® ab, r € M,
a,b € A™. Let us define an inner product

[, ] Mo A™ x M@ A —A™

by the equality

n m
dowi@an Y g @bi| =Y ai(wi,y)b;,
i=1 j=1 7,7
where ;,y; € M, a;,b; € A**. Sesquilinearity and the properties [z, w] = [w, 2]* and [z, w - a] = [z, w]a
are obvious. To verify that this inner product is positive we need the following statement.

Lemma 1.1.2 ([30], Lemma IV.3.2) Let B be a C*-algebra , ¢;; € B, 1,j = 1,...,n. A matriz [¢;;] €
My, (B) is positive zﬁzu bicijb; > 0 for any by,... b, € B. O

Since for any ay,...,a, € A

Za xl,x] a; = <le al,le az>2

i3
the matrix [(z;, 2;)] € M, (A) is positive, therefore the element .
hence [z,2] > 0 for all z € M @ A*. Let us put

N={zeMaA™ [z:]=0},

then A is an A**-submodule in M ® A**, and the quotient module M ® A** /N is a pre-Hilbert A**-
module. The Hilbert A**-module obtained by the completion of M ® A** /A with respect to the norm
given by the inner product [-,-] we denote by M# and we call it the extension of the module M by
the algebra A**. The W*-algebra A** contains the unit element and for any # € M, a € A we have
(r-a)®1—2x®ac N, therefore the A-module map  — = @ 1+ N, M—sM#. is well-defined. This
map is an isometric inclusion, since [r @ 1+ N,y @ 1+ N] = (z,y).

Let us denote by Homy (M, A**) the set of all bounded A-linear maps from M to A**. Let us equip
this set with a structure of a vector space over C by the formula (A¢)(x) := A¢(z), where A € C, x € M,
¢ € Homuy (M, A**), and also with a structure of a right A**-module by the formula (¢ - b)(z) := b*¢(z),
b € A**. For a functional f € (M#)’ we can define a map fr € Homy (M, A**) as the restriction of f
onto M, namely, fr(z) := f(z ® 1 + N). Obviously ||f&|| < ||l

Theorem 1.1.3 ([27]) For any C*-algebra A and for any Hilbert A-module M the map f — fr is an
isometry of (M#)' onto Hom 4 (M, A**).

Proof: Let a matrix [¢;;] € M,(A*) be such that Z” ajcija; > 0 for any ai,...,a, € A. Let us
demonstrate that it is sufficient to prove positivity of the matrix [¢;;]. For this purpose it is sufficient to

show that
> breijhy >0 (64)
i

i 07 bY(x;, x;)b; is positive for all b; € A**,

for any b1,...,b, € A*. Without loss of generality it is possible to suppose that the elements b; lie in
the unit ball By (A**) of the W*-algebra A**. Since the unit ball By (A) of the C*-algebra A is dense
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in By (A**) with respect to the strong* topology, it is possible to find nets a;.x € A, A € A, converging
with respect to the strong* topology to the elements b; € A**. Then the net Zij al., ci;a . converges to

Zi,j b¥ci;b; with respect to the weak topology, (see [30], §I1.2) whence the inequality (64) follows.

We need to demonstrate that any map ¢ € Homyu (M, A**) with [|¢||] < 1 can be extended up to a
unique functional f € (M#)" with ||f]| < 1. Let us consider the functional f; : M @ A**—A** given by

the formula
Jo (Z z; ® ai) = Z¢($i)ai~
i=1 i=1

Obviously fy 1s an A**-module map. Also for a; € A one has

D_aio@) olea; = Y olwi @) ola; ;) = (¢> (Z v )) ¢ (Z o )
<;l‘z 'ai,Z;l‘i : ai> = Za?<l‘i,l‘j>0j,

therefore for any b; € A** the following inequality holds

D brd(a) bx;)by < Db (i, x;)b;,
1,J

i3

IN

le.
fo(2)"fo(2) < [7, 7]
for all z € M @ A**. Therefore the functional f: M#—A** is well-defined by the formula

I (Zl‘z @ a; —I-N) = ZQ[)(l’i)ai

i=1

and satisfies the inequality f(y)* f(y) < [y,y] for all y € M# therefore ||f||] < 1. Hence f € (M#)". It
follows from the equality f(z @ 1+ N) = ¢(x) that f is the extension for ¢. O

Corollary 1.1.4 Let A be a C*-algebra, M be a Hilbert A-module. Then an A-valued inner product
on M can be extended up to an A**-valued inner product on the set Homy (M, A**) making this set a
self-dual Hilbert A**-module . 0O

Corollary 1.1.5 Let A be a C*-algebra, M be a self-dual Hilbert A-module. Then the Hilbert A** -module
M# s self-dual too. O

As one more corollary we shall present the following characterization of self-dual Hilbert modules.
Theorem 1.1.6 ([8, 6]) Let A be a C*-algebra. Then the following statements are equivalent:
(1) a Hilbert A-module H 4 is self-dual;
(i) the C*-algebra A is finite-dimensional.

Proof: Let us remark that both conditions of the theorem implies existence of a unit in the C*-algebra A.
Indeed, if A is finite-dimensional then 1 € A. If the module H4 is self-dual then the bounded A-module
map f : Hy—A defined by the formula f(a) = a1, where @ = (a;), a; € A, i € N, has to be the element
of the module H 4. It means, in particular, that Enda(A4) = End’ (A4) and so the identity mapping A— A
is identified with the unit element of A.

Let us use further the description of the dual module A, as the set of all sequences b = (b;), b; € A
such that partial sums of the series ¢, = Y ., b¥b; are uniformly bounded. Self-duality means that
for any increasing sequence (¢, ) of positive elements of the C*-algebra A boundedness is equivalent to
convergence of this sequence with respect to the norm. But, if C*-algebra is finite-dimensional, then the
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monotone bounded sequences are convergent, and it proves the implication (ii) = (i). For the proof in the
other direction we will pass to the Hilbert module H# = H 4+ over the enveloping W*-algebra A**. This
module is self-dual by Corollary 1.1.5. Since any monotone bounded sequence in the W*-algebra A** is
convergent, so any positive linear functional on A** is obliged to be normal, i.e. (A**), = (A**)*. Let the
W*-algebra A** be infinite-dimensional. Then it contains an infinite collection of mutually orthogonal
projections pip € A™ such that Zzo:lpk = 1. Therefore there exists an inclusion of the commutative
W*-algebra of bounded sequences [, into A**. Let ¢ € (loo)* be a positive linear functional on the
algebra l. Let us extend it up to a positive linear functional @ on the greater algebra A**. Under the
assumption, ¥ is normal, therefore its restriction @|;., = ¢ on the algebra /., is normal too. Hence we
have obtained an incorrect statement (/o )« = (loo)”. This contradiction shows that the W*-algebra A**
is finite-dimensional, therefore C*-algebra A is finite-dimensional too and it proves the implication (i) =
(iiy. O

1.2 Multipliers and centralizers

While writing this section we used widely [29, 36]. Let H be a Hilbert space, B(H) be the algebra of all
bounded operators on H, A be a C*-algebra.

Definition 1.2.1 A two-sided closed ideal J C A is called essential, if JNJ' # @ for any nonzero ideal
J'C A

Remark 1.2.2 An ideal J C A is essential if and only if

Jt:={acAlaJ =0} =0.

Definition 1.2.3 A representation p : A — B(H) is called non-degenerate, if for any h € H there exists
an element a € A such that p(a)h # 0.

Remark 1.2.4 For an arbitrary representation p we can take its restriction onto the orthogonal com-
plement H' to the invariant subspace Hy := {h € H | p(A)h = 0}, which is invariant too. The new
representation p' : A — B(H') will be non-degenerate. Thus, roughly speaking, we lose nothing when we
restrict ourselves to consideration of only non-degenerate representations.

Lemma 1.2.5 A representation is non-degenerate if and only if p(A)(H) is dense in H.
Proof: Let a representation be non-degenerate and hLp(A)(H), i. e. for any f € H and any a € A
0= (h, p(a)f) = (p(a*)h, f)

holds, whence p(b)h = 0 for any b € A. Hence h = 0.

Conversely, let p(A)(H) = H, h € H be an arbitrary nonzero vector. Without loss of generality it
is possible to suppose that ||| = 1. Since p(A)(H) is dense, one can find ¢ € H and @ € A such that
llh = pla)gl] < 1/2. Then [|p(a)g|l > 1/2

174> (h = p(a)g,h — p(a)g) = 1 = (g, p(a®)h) — (p(a®)h, g) + 1/4,

(g, p(a")B) + (p(a" Y, g) > 1, pla’)h£0. O

Definition 1.2.6 Let p : A — B(H) be a faithful nondegenerate representation, so we can assume
A CB(H). An operator # € B(H) is called a (two-sided) multiplier of A, if for any a € A

xa € A, ax € A.
Let us denote by M(A) the set of all multipliers. Tt is obvious that they form an involutive unital algebra.
Remark 1.2.7 Thus, until we prove Theorem 1.2.11, the definition of multipliers depends on the choice
of a (nondegenerate faithful) representation.
Proposition 1.2.8 The set M(A) is a unital C*-algebra,

ACM(A) C A™,

A s an essential ideal in M(A). If A is without unit, then AY C M(A).
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Proof: Three statements are nontrivial: 1) that it is closed with respect to the norm, 2) that the ideal is
essential, and 3) that there exists an inclusion into the second adjoint.

1) Let #; — x with respect to the norm, #; € M(A), # € B(H). Then ;4 — xa and ax; — ax for
any a. Since A is closed, za € A and ax € A (for any a), i. e. by definition, € M(A).

2) Let J be an ideal in M(A) and JN A = 0 and « € J be an arbitrary element. Then za € A
(since z is a multiplier) and xa € J (since a € A C M(A) and J is an ideal) for any a € A. Therefore
za€ JNA=0,za=0forany a € A. Then x = 0 by Lemma 1.2.5.

3) Since A" < Al = A** (cf. the remark after Theorem [19, Theor. 3.1.3]), it is sufficient to prove
that M(A) C A". For this purpose, first of all, let us remark that for any = € M(A) and for any weakly
converging net ay € A we have

zw—lim ay = w-lim(zay) € [Alw,
AEA AEA
since zay € A, and [A], = A" by the nondegeneracy of the representation, where [A], is the weak
closure of A in B(H) and where w—lim denotes the limit with respect to the weak topology. Hence
z A" = z[A]y C [Alw = A". Since 1 € A", z € A™. O

Another definition was historically the first:
Definition 1.2.9 A pair (L, R) of maps

L:A— A, R:A— A, R(a)b = aL(b) mas Bcex a,b € A.
is called a double centralizer of A Let us denote the set of all double centralizers of A by DC(A).
Proposition 1.2.10 Let (L, R) € DC(A). Then
(i) L(ab) = L(a)b and R(ab) = aR(b);
(i1) L and R are linear;
(iii) L and R are bounded, and ||L|| = || R|.
With respect to the norm

(L, B)|| = [IL]] = ||l
and to the actlions
(L1, Ry) + (L2, Ro) i= (L1 + Lo, Ry + Rs),  #(L,R) = (:L,2R), z€C,
(L1, R1)(La, R2) := (L1 L2, RaRy),
(L, R)" = (R, L7),  L7(a):=(L(a"))",  R(a):=(R(a"))", a€A,
DC(A) is a normed involutive algebra.
Proof: 1) Let a and b be elements of A, z € C and e, (o € A) be an approximate unit of A. Then
eal(ab) = R(eq)ab = eq L(a)b, L{ab) = L(a)b,
eal(za+ 2b) = R(ea)(za + 2b) = R(eq)za + R(eq)zb = zR(en)a + zR(eq)b =
= zeqL(a) + zeq L(b) = eq(2(L(a) + L(b))), L(za+ zb) = z(L(a) + L(b)).

2) Thus, L is a linear operator on the Banach space A and for the proof of its continuity it is sufficient
to prove that the graph is closed. Let a, — a and L(a,) — b. Then for any v € A

lo(L(a) = )|l < [loL(a) — vL(an)|| + [[vL(an) — vb]| = [[R(v)(a = an)[| + [[oL(an) — wb]| <
SR -[la = anl] + |0l - [1L(an) = b]] — 0.

Thus, vL(a) = vb, whence, since v was taken arbitrarily, we obtain b = L(a). We have proved that the
graph is closed, so L is continuous. Properties of R can be verified similarly.
3) Let us compare ||L|| and || R||:

ILI* = sup [|L(a)||* = sup [|L(a)"L{a)]| = sup [|R(L(a)")all

llall=1 llall=1 llall=1
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< sup [|R|-[|L(a)"[| - llal] < sup |RI|-[IZI] - [Jal* = | BRI - IZ]],

llall=1 llall=1

whence ||L]] < ||R]]. The similar calculation gives the opposite estimate.
The remaining statements are obvious, it is necessary to verify only that

Ra(R1(a))b = Ri(a)La(b) = aL1(L2(b)). a
Theorem 1.2.11 The map
#:M(A) = DC(A4), 2= (Ly, Ry), Ly(a) = ®a, Rg(a) = ax,

is an isometric x-isomorphism between M(A) and DC(A). Therefore DC(A) is a C*-algebra and M(A)
does not depend on the choice of a nondegenerate representation.

Proof: First of all al,(b) = azxb = Ry(a)b, so that (L,, R;) really lies in DC(A). The linearity of the
map 1s obvious. Also,

Lay(a) = (zy)a = 2(ya) = Ly(ya) = La(Ly(a)),  Reyla) = a(zy) = (av)y = Ry(az) = Ry(Ry(a)),
(Loy, Roy) = (Lo Ly, RyRe) = (Lo, Re)(Ly, Ry),
thus, g 1s a homomorphism of algebras. It is involutive:
(Lz)"(a) = (Lga™)* = (za™)* = ax™ = Ry« (a), (Ry)"(a) = (Rya™)” = (a*2)" = 2*a = Ly (a).

As ||za|| < ||z]] lal], so [|Lz|] < [||]. Conversely, since the representation is non-degenerate, ze, — with
respect to the strong topology, where e, is an approximate unit of A. Indeed, for any a € A we have the
convergence of e,a — a with respect to the norm, whence ze,a — xa with respect to the norm. From
the nondegeneracy we obtain the strong convergence ze, — « on the dense set AH, and, by boundedness
[|zeq|] < ||| the strong convergence takes place everywhere on H. Let ¢ > 0 be taken arbitrarily. Let us
choose h € H such that ||h|| = 1 and [|z|| < ||zh|| + &/2. Since # = s—lim,, xeq, xeqh — xh and one can
find a such that ||zh — zeyh|| < £/2. Then ||z|| < [|xeq|| + €. Therefore

el 2 [ Le(ea)l| = [lzeall = ||zl - ¢,

and since ¢ is arbitrary, ||Ly|| > ||#||. So p is an isometry.

It remains to demonstrate that Im y = DC(A). Let us consider an arbitrary element (L, R) € DC(A).
Then the sets L(eq) and R(eq) are bounded and, by the weak compactness of the unit ball B(H), they
have points of accumulation with respect to the weak topology z; € A" and xr € A", respectively.
Passing, if necessary, to sub-nets, we can suppose without loss of generality that

= w-lim L(ey), = w-li o).
L wljtn(e) TR wljtnR(e)
Then g = zr. Indeed, for any a and b from A the following relations hold
arrb=a w—li}{nL(ea)b =a w—lijtnL(eab) =alL(b) = R(a)b,
arrb =a w—lijn R(eq)b = w—li}‘rnR(aea)b = R(a)b,

whence zp = xg (cf. the proof of item 2 of Propositin 1.2.8). Let us denote z := 2 = xg. Then

L{a) = w—lijtnL(eaa) =za = Ly(a),

R(a) = w—lijrnR(aea) = ax = Ry(a),
in particular, € M(A). The equalities demonstrate that u(z) = (L, R). a

Example 1.2.12 1). The equality M(A) = A holds if and only if A is unital.
2). For a commutative algebra A = Cy(X) the following equality holds

M(Co(X)) = Cp(X) = C(BX),
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where Cp(X) is the algebra of all bounded functions with uniform convergence, and X is the Stone-Cech
compactification of X.

3). For the algebra X = K(H) of compact operators one has M(K(H)) = B(H).

The proof of 1) and 2) can be found, for example, in [36], and 3) will be proved below in a more
general situation (Theorem 2.1.1).
Definition 1.2.13 Let p : A — B(H) be a faithful non-degenerate representation, so we can assume
A CB(H). An operator # € B(H) is called a left multiplier of A, if for every a € A

xa € A.

Let us denote by LM(A) the set of left multipliers. It is obvious that they form a unital algebra. Similarly
one defines right multipliers RM(A).
An operator # € B(H) is called quasi-multiplier of A, if for every a, b € A

axb e A.

Let us denote by QM(A) the set of all quasi-multipliers. It is obvious that they form an involutive linear
space.
Definition 1.2.14 A linear map A : A — A is called a left centralizer, if

Alab) = A(a)b, for each a, b € A.

Similarly one defines a right centralizer . Let us denote the spaces of left and right centralizers by LC(A)
and RC(A).
Definition 1.2.15 A linear map ¢ : A x A — A is called a quasi-centralizer, if

Aa € LC(A), rae Ag 1 b— q(a,b), m € RC(A), rae py 1 a— q(a,b), foranya, be A.

In other words,

q(ca, bd) = eq(a, b)d, for any a, b, ¢, d € A.
Lemma 1.2.16 Let p € RC(A), then p* € LC(A).
Proof: Let us remind that p* is defined as follows: p*(a) := (p(a*))*. Then

77 (ab) = (p((ab)))" = (p(b"a"))* = (p(a*)" = p*(@)h. D

Lemma 1.2.17 [29, Lemma 3.12.2] FEach right centralizer, each left centralizer and each quasi-
centralizer 1s bounded.

Proof: Let p € RC(A). Let it be unbounded, i. e. there exists a sequence x, € A such that ||z,|| < 1/n
and ||p(x,)|| > n. Then the element a := ) «}z, is well-defined. By Proposition [29, Prop. 1.4.5]

(see. also [19, Prop. 1.1.5]), let us define for each z, an element u,, € A such that ||u,|| < ||a1/6|| and

2, = upat!3. Then
lp(za)ll = [[unp(a )] < llp(a*/®)[] - la"/°]].

We have obtained a contradiction, hence p i1s bounded. In a similar way one can prove that any left
centralizer is bounded too. Thus, ¢ € QC(A) is continuous separately in each variable as a map AxA — A.
By the principle of uniform boundedness such operator is continuous in both variables (see [5]). a

Proposition 1.2.18 [29, Prop. 3.12.3] Let A — B(H) be a non-degenerate faithful representation.
Then there exists a bijective isometric linear correspondence between left, right and quasi-multipliers and,
correspondently, left, right and qasi-centralizers. In the first two cases it 1s a homomorphism of algebras,
wn the third it is a homomorphism of involutive spaces.

Proof: The correspondence for the left and right multipliers, and also its properties, actually were already
described in Theorem 1.2.11. Let ¢ € QC(A) and = € A" be an accumulation point with respect to the
weak topology of the bounded directed net {g(eq, €q)}, where {e4} is an approximate unit for A. Passing,
if necessary, to a sub-net, we can, as well as before, suppose that # = w—lim, ¢(eq, €4). Then for any
a,be A
A3 q(a,b) =limq(acq, eqb) = limag(eq, eq)b = ary,
(a3 (a3

holds, so that * € QM(A) C A". The necessary properties can be verified exactly as the similar ones
in 1.2.11. a
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Proposition 1.2.19 Let A be a (closed two-sided x-) ideal of a C*-algebra B. Then there exists a unique
homomorphism v : B — M(A) identical on A.

Proof: Let us put y(b) := (Ls, Rp), i. e. Lp(a) = ba, Rp(a) = ab, where we identify M(A4) = DC(A).
Since A C B is an ideal, ba € A and ab € A, so that y(b) € DC(A). Thus, obviously v|4 : A = M(A4).

Let us assume that besides v there exists a homomorphism 6 : B — M(A) possessing the demanded
properties. Then for any b € B and a € A

d(bja = d(b)d(a) = &(ba) = ba,  y(b)a =~(b)y(a) = v(ba) = ba,

i. e. v(b) and §(b) coincide as multipliers of A, s0 6 =~v. O

Corollary 1.2.20 Let p : A — B(H) be a faithful representation of A and A C B be an ideal. Then
there exists a representation of B extending p.

Proposition 1.2.21 Let A and B be some C*-algebras and let ¢ : A — B be a surjective morphism.
Then ¢ can be extended up to a morphism ¢" : M(A) — M(B) and induces a morphism @ : M(A)/A —
M(B)/B, which completes the following diagram up to a commutative one:

A——>M(4) —=>M(4)/A

wl lw,, lﬁ

B——M(B) —= M(B)/B.
If ¢ is an isomorphism then ¢” and @ are isomorphisms too.

Proof: Let (L, R) € DC(A). Let us define E, R:B—> B by putting

~

L(b) == ¢(L(a)),  R(b):=¢(R(a), be B, b=gpa),

Let us demonstrate that these maps are well-defined. Let e, be an approximate unit of the algebra A

and b = ¢(a) = ¢(a’). Then
p(L(a) — L(a")) = limplea (@) — eaL(@)) = lime(R(ea)) pla — ) = 0.
A similar equality holds for right multipliers. Since for b1 = ¢(a1) and bz = ¢(a2)

R(b1)bs = p(R(a1)) ¢(az) = p(R(a1)az) = p(arL(az)) = ¢(a1) ¢(L(asz)) = BiL(b2),

then (E, E) € DC(A). Let us define ¢ : DC(A) —» DC(B) as ¢"'(L, R) = (E, ITE) Then it is a *-morphism
of algebras extending ¢. This map induces a map of quotients. Indeed, if (z —y) € A, , y € M(A), then
o' —y) = go(x —y) € B. We have obtained the desned commutatlve dlagram

If now ¢ is an isomorphism, o"(L, R) (peoLe ¢ L poRep™1), so that ¢” is an isomorphism, the

inverse map is defined by (L R) (¢~ LoT o o, 0" Lo Ro ¢). By the five-lemma % is also an isomorphism.
O

Remark 1.2.22 The homomorphism ¢ coincides with the canonical extension of ¢ to A" restricted
onto M(A).
2 Operators on Hilbert modules as multipliers

2.1 Multipliers of A-compact operators
Theorem 2.1.1 [13] Let M be an arbitrary Hilbert A-module. Let us define a map

¢ : EHdZ(M) — DC(IC(M)), T (Tl,Tz), Tl(gx,y) = ng‘,ya TZ(gx,y) = 9@‘,T*y~
Then ¢ defines an isomorphism End} (M) = DC(K(M)).
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Proof: First of all, let us remark that
Oreyz =Tely z) =T°0,4(2), Op rryz = 2(T7y, 2) = 2(y, Tz) = Opy°T(2),

so that T} and T can be defined in equivalent way (and for all compact operators simultaneously) by
the formulas

Ti(k) =Tk,  To(k):=keT,  keK(M).

From these equalities we obtain at once that 7T} and T3 are well-defined as maps K (M) — K (M) (since
K (M) C End’y (M) is a two-sided ideal) and are bounded by the norm ||T7|. As

To(k1)ka = k1Tha = k171 (k2), ki, ko € K(M),
o (Th,T2) € DC(K(M)). Since
(TS)1(k) =TSk =T1(S1k), (TS)a(k) = kTS = Sa(T2k),

¢ 1s a homomorphism of algebras. It respects the involution:

TV (Ory) = (T1(07 )" = (T0y,0)" = 0o, T, T7 = (T7)s,

T5 (00 y) = (T2(0; )" = (Oy,e T)" = T"0sy, Ty =(T7).
The map ¢ is algebraically injective. Indeed, let 737 = 0 and 75 = 0. Then for any z € M
0="T1(0;7s)(Tx) = Tx(Tx, Tx) holds, whence (Tx,Tz)> = 0 and Tx = 0. Hence T' = 0.

To prove that ¢ is an epimorphism, let us construct an inverse continuous map ¢. Let (71,75%) be an
element of DC(K(M)) and # € M. Let us consider the limits

T(z) := nlgrgo To(z), Th(z) :=T1 (0 o) (2)[{z, z) + 1/n]™1, (65)
T(w) = lim T(x),  T(x) = [Ta(0r0)]" () (2, ) + 1/n] 7 (66)

Let us prove their existence. By Theorem 1.2.11 (71, T%) = (Lr, Rp), where F € M(K(M)). Then
(T3 (k)" Ti (k) = (FR)"Fk = k*F* Fk < ||FIPR*k = |13k F,
To(k)(Ta(k)" = kEF(kF)" = kFEK < ||F|Phk" = [|T5]kk",
where the inequalities are the operator inequalities of elements from K (M)**. Then
(T (@) = Ton (), T () = T ()
= ([, 2) + 1/n]™" = [(@,2) + 1/m] ™ T3 0 o) (@), T (B0 ) (@) ([, @) + 1/n] =) = [(a,2) + 1/m] "1}
< (a2} + 1] = [, 2) + 1/m] = (T (0r.0)) T < @), ) [, e)+ ]~ = (o, + 1/m] ")
< ([, o)+ 1/ = [ @) 4 1/m] YT (O o60.0) (), ) {2, ) + L/m] ™" = [, 2) + 1/m] ™)
— TP (T, ) + L/l = [, @) + 1/ 1}<Hx<x o), ) {[(w, )+ 1/n] " = [f,2) + 1/m] ™)
— TP G Y { [ )+ L] = [, )+ L/m] ™,

Thus, the Cauchy criterion of convergence for (65) is the same, as for the limit from [19, Lemma 1.3.9],
therefore the convergence is proved. The convergence of (66) can be proved similarly. We have obtained
the maps T" and T~ defined everywhere on M. Also by [19, Lemma 1.3.9]

(e, ") = lim (&, [To(0y,)]" () - (o) + 1/0] )

= Tim (T5(0y.)0s o (2) (2, ) + 1/n] ™y - (w0 + 1/n] ")

= lim (0,4 T3(6000) (@)@, 2) + 1/n] "y - [(y,w) + 1/m] ")
= lim (T3(0r0)(@)[(@,2) + 1/n] 7, 6, (9) - [y, p) + 1/n] ") = (T, ),

n—od
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Hence, by [27, 13] (see. also [19, Lemma 2.1.1]) 7, T* € End’ (M). It is necessary to verify that ¢(7) =
(T1,Tz). Let us denote
1\
T, = ((x, )+ g) ,

and remark that by [19, Lemma 1.3.9]

Op y(2) = 2y, 2z) = lim z(z, )z, (y,2) = lm b; 20,0, 4(2). (67)
n—00 n—00
Therefore
Ti(00y)(2) = im T3(00 a6, ,)(2) = lim T3(0s 2)0rc, 4(2)
= lim T1(8, o)z, (y, z) = T(x){y, 2) = T b 4(2).
n—r 00
A similar reasoning for 75 completes the proof. a

It is easy to obtain the following extension of this theorem.

Theorem 2.1.2 [17, Theorem 1.5] There exists an isomelric isomorphism of Banach algebras
¢ : End 4 (M) — LM(K(M))
ertending the homomorphism ¢ from the theorem 2.1.1.

Proof: As usual, unitalizing, if necessary, we can suppose the algebra A to be unital. Let us define ¢, as
before, by the formula
STV =Th, kK EK(M),

so that it extends ¢ from Theorem 2.1.1. Then the calculations presented in the proof of 2.1.1 for T}
show that ¢ is an algebraically injective homomorphism of algebras and ||¢|| < 1. To prove that it is an
epimorphism, let us define a continuous inverse map for ¢ similarly to 2.1.1:

P(S)(z) := lim T, (), To(2) := S0, 4) (2)[{z, z) + 1/n] ™, SeLM(K(M)), =eM.

n—od

By the same reasons as in Theorem 2.1.1, the limit exists. Let us show that it defines an A-homomorphism.
The boundedness of the operator ¢(S) : M — M and continuity of ¢ can be verifed as follows. For any
¥ € M, ||z]] < 1, we have (see [27, 3.11] and [19, 3.4.1]) « = u(x, z)'/?, where u € (M#)" and for any
3 > 0 one has u(x, x>ﬁ € M. Put

1 1
Y= u(m,x>3°‘_1/26/\/l, z = u(m,x>1/2_°‘6/\/l, Z<a<§,

so that
(w,y) = (@, 2)®, (2,2) = (w,2)' 7%
Then
0.0, y(v) = 2(z, 2){y,v) = u(z, x>1/2_°‘<x, x>1_2°‘+3°‘_1<x, v) = 0y 2 (v).

Forany n=1,2,...
(Thx, Thx) = [, 2) + 1/0] 7 (S(00,0) (), S(0r,0) (x)) [(, 2) + 1/n] 7
(e, 2) +1/n] 7 (S(0: )02y (), 5(0:,2)0: 4 (2)) [(2, 2) + 1/n]
(z,2) +1/n] 7" (y, 2)"(S(0:,2)2, S(0: 2)2)(y, @) [z, 2) + 1/n] 7"
<180 )P [, ) + 1/n] ™ (g, 2)" (2, )y, ) [, 2) + 1/n] 7
= 150: )P, 2) + /0] ™" (e, a)**F [(, ) + 1/n] 7
whence, while n — oo, we obtain

((S)x, p(S)x) < ISP e, x)* ™, 1/4<a<1/2.
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In the limit for « — 1/2 we get the estimate
($(S)a, ¥(S)z) < [IS]]*(w, x).

Thus, [|¥(S)]] < ||S]] and by [27] (see also [19, 2.1.4]) ¥(S) is an A-homomorphism. Hence (S) €
Enda (M) and ||| < 1.

Let us show that ¢t = Id,pg. For this purpose it is sufficient to verify that S(0; ) = ¥(S)°0,, =
0y (5)z,y- Using the formula (67) and denotation from it, we obtain

S(lyy)(z) = im S(br 00pc, y)(z) = lm S0 +)0pe, y(2)

= lim S0y )zza(y, 2) = P(S)(2){y, z) = ¥(S)° b y(2).

As ||¢]|, as well as [|¢|], does not exceed 1, so ¢ is an isometry. O

2.2 Quasi-multipliers of A-compact operators

In this section we present a modified proof of the theorem 1.6 of [17]. Let us remark that this theorem
and similar statements about the left and double multipliers can be deduced from some general results
about multipliers (see [28]).

Theorem 2.2.1 Let M be a Hilbert A-module. Then the map ¢ from Theorem 2.1.2 can be extended up
to an sometric involutive 1somorphism

¢ : Enda (M, M) — QM(K(M)).
Proof: The formula
¢(T)(9x v 8, ) = gxlyy.(T(x)(yl))’ z,y, l‘/, y/ € ./Vl, Te EndA(/\/l,./\/l/),

obviously is bilinear, thus, it defines a map on a dense subset in X (M) x K (M) with values in K(M).
Let us estimate the norm of this operator. Let # = u(x,a:>1/2 be the polar decomposition of x in

(M#*)'. Let w. := u(z, z)*, where 0 < ¢ < 1/2. Let us remind that the structure of a right module on M’

is defined by (ya)(y) = a*p(y) for a € A, ¢ € M’ and y € M. By [27] (see also [19, 2.1.4]), we obtain

102r y () (NP = 1z, u) (T (@) (y) (', & W T (@) (y')* (y, 2)|]

= |z, y) e, @) 25 [T (w) (v, )T (we) ()], )2~ (g, 2)]
< ', &Y 2T () @O - I, 7)== (y, )1
= |G’ &) [T (we ) (0] [T (w:) ())&, ) 2| - ([, 2) 2=y, 2)])°
T (w1 (14, Y2y W, a2 [, )2 =5 (y, 2z, y), ) 24|
< T w)1” - 1!, & Y2y ) 27 (s )2 = g ) 2 - D)2

Passing to the limit ¢ — 0, we obtain |Jw,|| — 1 and

100 iz ey N < ITI - (G 2 20y Y 2] ) 2, )2 2]
Therefore ||¢(T) (0o yr, 0 )| < TN - 16 ye|| - |62 yl]- Thus, ¢(T) : K(M) x K(M) = K(M). As

ST (K Oy, O k) = S(T) Okrer g, o y) = Onrar oy (1)) = K 0oty (r@) s (68)

so we have ¢(T) € QC(K(M)). Moreover, the previous calculation shows that ¢ is continuous: ||¢|| < 1.
Let us show the algebraic injectivity of ¢, i. e. that Ker ¢ = 0. Let 7" # 0. It means that there exists
a vector € M such that T'(x) is a nonzero functional, T'(z)(y') # 0 for some (nonzero) y' € M. Then

(T@) W) T@) ) <NT@IPY ), Woy) 2 IT@IT (@) ) T) (),

)
(
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Therefore
(- (T(@) ) (T(@) W),y - (T@) ) (T(=)()
|

= (T() (') (T (=) ()Y ¥ )T (@) () (T() () 2 1T @I (@) () T () ()} # 0

and

= (T@)) (1)), v - (T(=)()

Thus, ¢(T) # 0 and the algebraic injectivity of ¢ is proved.
To prove that the mapping is a surjection and an isometry, it is sufficient to define, as in the previous
theorem, a map

1 QC(K(M)) — End(M, M), ¢u(S) =5, [P <L
For any S € QC(K(M)) and any k € K(M) the map S(k, .) : K(M) = K(M) is a left centralizer, or,
in terms of multipliers, for any S € QM(K(M)) and any k € K(M) the element kS € (K(M))" is a
left multiplier. Then the map ¢ : LM(K(M)) — End(M) from the previous theorem is applicable to it.

For making a difference between the mappings we shall denote the mappings obtained in the previous
theorem by ¢’ and v’. To define v, let us put for each z, y € M

WS = i Te) Toless) = (00,800 (00 +3) - 09

We have to verify the following:

The existence of limit in (69).

The linearity over A and C of this expression in z and y.
That the estimate [|(#(5) (2)) (5} < (151l Jall ly] holds.
The identity ¢9(S) = S.

B b

Let y = u - (y,y)'/?, u € (M#)" and let us put

_1 1_ 1 1
Z1:U'<yay>3a ;a Z2:u<yay>é aa Z<a<§

Then y = z1 - (y,y)1 3% and y = 22 - (y, y)*, therefore z; € M and 2 € M, as 1 —3a < 1/4 < 1/2 and
a < 1/2.Forn=1,2,... we have (similarly to the proof of Theorem 2.1.2)
177" 117!
WOy [+ 1] = e baS) b ) [t0) + 2]

n

-1

= (V000 [0+ 1] = 0V 09000 [0+ 1]

= <1/)/(922,ZQS)(J;)’ ZZ> <Zla y> [(y, y> + %] ) == <1/)/(922yz25)(l‘), 22> <y, y>3a |:<y’ y> =+ %:| ) .
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It is possible to deduce from this equality three corollaries. At first, for y with ||y|| <1

(Tole.2), Toles)) < 9O SN () + 2] (000 o 22) 0™ [t + 2]

n

(a3 —ZQ 1_2 —ZQ (a3 1_2
< WIS, 002 [+ | < IO NS0 (G0 + 1

o 1777
smwﬂznwwwwwwfk%w+;] < (I8l ll2l)?

and the item 3 is proved. Secondly, by fixing some «, we have

<Tn(xay) - Tm($ay)aTn($ay) - Tm($ay)>

1\ 1\
snwmﬁwwwwwww“mlc%”+;) (o +5) ]_%Q

since 4a > 1. The item 1 is proved. Finally,
1 -2
<nww»nww»SMW“%Wammw%w“mk%w+ﬁ

< Dol NS P el P ) — WSWP WP ww) (0 — ),

and it gives 2 by [27] (see also [19, 2.1.4]), as linearity in z is obvious.
To prove 4 it is sufficient to verify for elementary compact operators that

S(szyy/,gxyy) = 9x’,y~(w(5)(x)(y’))a S e QC(IC(M)), xz, Yy, l‘/, y/ e M.
Let

e=u-(e, )% Y =Y vi=u(e, ) e M, W =y e M, v e (MFY

so that for w := u(z, z)!/3 € M and any » € M we have

o=

Oy o0 (2) = v (@, 2) T 575 (u- (w0, 2% 2) = & - (w,2) = O, (2), (70)

while 0y o (2) = 2 - (z, 2)s~ 5+l = . (&, 2)2/3. Therefore, if T € LM(K(M)) then for w' := u - (x, 2)!/12

wwwmzhmawmmmka@+%4:1muww%wm@kx@+ﬂ”

n

Similarly to (70), we obtain that
Hylyy/ = kuywu H’U’,’U’a w// = v/<y/’ y/>1/3 c M
Then, after putting w. := v’ (¢, ¥')*/*? € M, we have
i (4 0y 8) @), Y K0/ 11 = i (0 (B n008) (), 0 1)+ 1]

= lim (Gurwn ' (o0 S) (@), ¥ ) [y ¢/ + 1/n] 7 = Tim (w” - (w”, 4" (00r,00S) (), ') [y o) + 1/n] 7

n—od n—od
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— lim <1/)/(9v’,v’5)(x), w//> <w//’ y/> [<y/’ y/> + 1/77,]_1

= lim (' (6008)(2), wa) (¢, o) 5~ =75 [y o) + 1 /m) ™
= lim (¢/(0,0,0:5)(2), wi) (o, /)2 (o', o) + /]!

(W (00 S) (@), wa) (' ¥') 2 = (W (00 00 S) (), V),
whence
Oury-(u(s)@) ) = M Oy (w6, ,08)(@),(5") [y’ 9" +1/n]
= a0 (001,00 9)(@)0") = Oar (00100580, )()0) = Vot y-(S(8,1,01.80,0)(0),07)
In the last expression we used the presentation of quasi-multipliers in the form of quasi-centralizers. On
the other hand, ¢ = ¢/ - (¢v/,v), e = v - (v, v)
S(Hx’,y’a gx,y) = S(gx’,v’gv’,v’a gv,vgv,y) = gx’,v’S(gv’,v’a gv,v)gv,y

= gx’,v’gS(GU/)U/,GU)U)U,y = 9x’,y~(5(€vl)vl,GU)U)U,U’)~

The item 4 is proved, and finishes the proof of the theorem. 0O

2.3 Inner products on Hilbert C*-modules

Let M be a module over C*-algebra A, on which two sesquilinear maps (-, -); and (-, -), are defined in
such a way that with respect to each of these maps the module M is a pre-Hilbert one.

Definition 2.3.1 Two inner products (-,-); and (-,-), are called equivalent, if the norms definied by
these inner products are equivalent.

Let us remark that if the inner products are equivalent then, if the module {M, (-, -),} is Hilbert then
the module {M,, (-,-),} is Hilbert too.

Let us consider at first the case of different inner products on self-dual Hilbert modules.

Proposition 2.3.2 ([8]) Let M be a self-dual Hilbert A-module over a C*-algebra A with the inner
product (-, -),. If (-,-), is another inner product equivalent to the given one then there exists a unique
invertible positive operator S € End’y (M) such that (z,y), = (Sz, Sy), for all v,y € M.

Proof: Let us consider for # € M a functional on the module M defined by the formula y — (2, y),.
As the module M is self-dual, so there exists an element Bx € M such that

<$’y>2 = <Ba:,y>1

for all y € M. The map x — Bz is an A-homomorphism. Let us denote by [|-||, the norm defined by the
inner product {-,-);, ¢ = 1,2. By the assumption there exist constants k,[ > 0 such that for all z € M

I'e)
llelly < K flfly < lf]; -

Then
2

!
2
|1Belly = [[(Bz, Bx), [| = [I{x, Ba),|| < [|lzfl, [[Bzll, < 75 lllly 1Bl ,

therefore ||Bz||, < 2—22 |]],, i. e. the map B is bounded. The equality (Bzx, ), = (x,x), > 0 means that
the operator B is positive with respect to the initial inner product. The inequality

2 2
lelly < k& llally = &% [, 2),ll = K2 I(Ba, @)y || < & (1Bl flolly

shows that the estimate ||Bz||; > 1%2 [|z||; holds, from which we obtain by [24] (cf. the proof of Theorem
2.3.3 from [19]) the invertibility of the operator B. To complete the proof it remains to put S = B-1/2,

O
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Proposition 2.3.3 ([9]) Let M be a Hilbert module with an inner product (-,-),. Let (-,-), be another
inner product equivalent to the initial one. Then the map M—M'" given by the formula x — (x,-),, © €
M, defines an invertible positive element in QM (K (M)) C K(M)**. Conversely, any invertible positive
element in QM (K(M)) C K(M)** (which can be identified with an element T' of the set End (M, M))
defines an inner product {x,y) = T(x)(y), »,y € M.

Proof: Let ¢ : Endy (M, M) —QM(K(M)) be the isometric isomorphism defined in Theorem 2.2.1,
0 y(1)0. 0 = Op0.7(2)(y)> ©, ¥, 7,1 € M. The map & — (x,-), is bounded, therefore it defines a map
T : M—M' and the element ¢(T) € QM(K(M)) is defined by the equality

Hx,yQS(T)Hz,t = 9x,t~(z,y)2

(let us remark that the elementary operators of the form 6, , are considered with respect to the initial
inner product (-, -);). Then for s € M

<9x,x~(y,y)2(5)a5>1 = (- (z (Y, ¥)9,8)1,8), =z (v, y>2a5>s1ﬁ<$a5>1 = <l’a5>s1ﬁ<ya Y)olz,s); > 0.

As linear combinations of elementary operators are dense in the algebra (M), so we obtain that the
operator ¢(T) is positive. Let us show that it is invertible. Let us pass for this purpose to the Hilbert
module M# over the enveloping W*-algebra A**. Both inner products can be extended to the module
M# and to the self-dual module (M#)’. By Proposition 2.3.2 there exists an invertible operator S €
End’.. ((M#)") such that these extensions of inner product are related by (x,y), = (Sz,Sy), for all
z,y € (M#)'. But the image of the operator ¢(7) under the inclusion QM (K (M)) C End’..((M#))
obviously coincides with the product S*.S. Since the operator S is invertible, the spectrum of the operator
#(T) is separated from zero, therefore ¢(7T') is invertible. In the opposite direction the statement can be
proved similarly. O

Corollary 2.3.4 ([9]) Let M be a Hilbert C*-module with an inner product (-,-),. The following condi-
tions are equivalent:

(1) any other inner product (-,-), equivalent to the initial one is defined by an invertible operator

S € End4 (M) and is given by the formula (x,y), = (Sx,Sy),, v,y € M;

(i) each positive invertible quasi-multiplier T € QM(K (M) can be decomposed into a product T = S*S
for some invertible left multiplier S € LM(K(M)). O

Theorem 2.3.5 ([9], see also [2]) Let M be a countably generated Hilbert C*-module with an inner prod-
uct (-, -);. Then for any inner product (-, -), equivalent to the initial one there exists an invertible operator

S € Enda (M) such that (x,y), = (Sz, Sy),.

Proof: Under the supposition the C*-algebra K (M) is o-unital, therefore it contains a strictly pos-
itive element H € K(M). Tt is sufficient to show that each positive invertible quasi-multiplier ad-
mits a decomposition T = S*S with some left multiplier S. Let us put K = (HTH)l/2 € K(M),
V, = K (H2 + %)_1 H € K(M). Then ||V,]] < ||T||1/2 and the sequence (V, H) converges to K with
respect to the norm. Then for any K’ € H - K(M) the sequence (V, K') is norm-convergent to KK’.
Since H - K(M) is dense in K (M), we conclude that the sequence (V},) converges with respect to the left
strict topology to some element S € LM(K(M)) and SH = K. Therefore HS*SH = K*K = HTH and
finally S*S=7. 0O

As we can see from the following example of nontrivial inner product, the requirement for Hilbert
modules to be countably generated is essential for Theorem 2.3.5.

Example 2.3.6 ([2, 9]) Let H be a non-separable Hilbert space. Let us consider the space
X=AeeB(H):1/2<x< 1}

equipped with the weak topology and the standard Hilbert C'(X)-module H¢(x). Let us show that there
exist inner products on H¢(x) equivalent to the standard one, but not admitting representations of the
form (5., -) for any operator S € Ende(x)(He(x)). For this purpose it will be sufficient to find a
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quasi-multiplier 7' € QM(K ® C'(X)) not representable in the form T'= 5*S, S € LM(K @ C(X)). Let
us use the identification of LM(K ® C(X)) (resp. QM(K ® C(X))) with the set of bounded maps from
X to B(H) continuous with respect to the strong (resp. weak) topology (it is discussed in detail in the
next Section). Let us define a new inner product on the module H¢(x) by the formula

(U, 2),(x) = (y, 2 (2))(2), (71)

where y, 2 € Hex), © € X. It is easy to see that 1/2(y,y) < (y,¥), < (y,y). This inner product defines
a positive invertible quasi-multiplier 7'. Suppose that 7' = S*S for some S € LM(K ® C'(X)). Let us
show that it is possible to choose a separable infinite-dimensional Hilbert space Hp C H such that
T(x)Hr C Hr and T=Y(2)Hr C Hy for all x € X. Let {e1,...,ex,...} be a basis of some separable
subspace Ho C H. By the compactness of X the sets T(X)e, and T~1(X)ex are compact subsets in H for
each number k, therefore they generate a separable Hilbert subspace Hy C H such that T(X)Hy C Hy,
T~YX)Ho C Hy. Further on we find by induction separable subspaces H, C H such that T(X)H, C
Hpy1, T7YX)H, C Hpy1. Finally let us put Hy := (U, H,) , i. e. the closure of the union of all H,,.
Let us denote by Xy C X the subset

3 4 . .
Xo = {( 7°/* 3;4 ) S HT—>H%—a [|7|] < 1/4, r is linear }

The restriction of the operator S onto the subspace Xy has the form
S| _ 51 52 * _ 3/4 * * _ 3/4 * _
X, = 0 s5 ) 5181 = , S989 + S383 = , S182 =71

with respect to the decomposition H = Hp ¢ H%‘. Since the subspace Hp is invariant under the action
of T~!, the operator s; € B(Hry) is invertible, and the operator %51 is unitary. Since the map u — u*
is continuous with respect to the strong topology on the group of unitary elements, we conclude that
s7 1s continuous on Xgy. Therefore the map r = sjsa2 1s also strong continuous as a map from Xy to
B(H%‘,HT). Thus, the assumption of possibility of decomposition 7' = S*S implies that arbitrary weak
continuous bounded (by the number 1/4) linear map r : Hyr—H4# turns to be strong continuous. But,
as the strong and the weak topologies on the ball of radius 1/4 in B(H%‘, Hr) do not coincide, so the
obtained contradiction shows that the inner product (71) is not related to the standard inner product on
the module H¢(xy by any invertible bounded operator .S € Enda(He(x))-

If one considers different equivalent inner products on Hilbert C*-module, the problem on whether

an operator admits an adjoint, depends on the concrete inner product. By Endz(l)(/\/l) (resp. K(i)(/\/l))
we denote the C*-algebra of operators admitting adjoint (resp. compact operators) with respect to the
inner product (-, -);, ¢ = 1,2. The adjoint operator for the operator T" with respect to this inner product
we denote by T(*i).

Proposition 2.3.7 ([9]) Let M be a Hilbert A-module over C*-algebra A with the inner product (-,-);.
Let S € Endy (M) be an invertible operator defining the inner product (-,-), = (S-,S-),. Then the
operator S admits an adjoint with respect to the first inner product if and only if it admits an adjoint
with respect to the second one.

If S admits an adjoint then the sets Endz(l) and Endz(z), KW(M) and KP(M) coincide.
Proof: Let the operator S admit an adjoint with respect to the inner product (-, -),. Then for all z, y € M
(Sx,y), = (S%x, Sy), = (Sx, S(STISTSy), = (=, (S7'S) S)w)s

and the operator Szﬁz) = S‘lSz‘l)S is an adjoint to S with respect to the second inner product. The
converce statement can be proved similarly.

Let us assume now that S € End’ M). Let B € Endz(l)(/\/l). For all z,y € M we have the following
equality

(B,y), = (SBx,Sy), = (Sx, S(S™H (ST By S{yS)wdy = (2, (STHS™) 1 By S{y S)wd
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therefore By, = 5_1(5_1)2‘1)32‘1)52‘1)5, l.e. B € Endz(z)(/\/l). The statement about compact operators
can be proved in the same way. 0O

However, if the inner product is defined with the help of an operator S which does not admit an
adjoint then operators admitting an adjoint with respect to one of the equivalent inner products need
not admit an adjoint with respect to the other one. Thus a problem arises if a functional on M can be
represented as an inner product by elements from M. More precisely, we define the set F' C M’ by the

equality
F= U <ya >ﬁa

peB;yem

where B is the set of all inner products (-, ~>ﬁ equivalent to the initial one. The functional f € M’ will
be called representable, if f € F'. We study the set F' for the standard Hilbert module H 4. Let us denote

the extension of the initial inner product from the module H 4 to ij = H -+ and to its adjoint module
HY,.. still by (-, ). Tt is obvious that H), C H/;...

Proposition 2.3.8 If f € H', is representable then in the module H, there exists such element z, for
which the following operator inequality

afz,2) < B(f, ) <(fo2) <A f) <6(z,2) (72)
holds for some positive constants «, 3, v, 4.

Proof: By the theorem 2.3.5 any inner product equivalent to the given one has the form <x,y>ﬁ =

(Sz, Sy), where S € Enda(H4) is an invertible bounded operator. If f is representable then f = S*Sz
for some S and some z € H 4, the operator {f, z) € A is positive, and we have

(fy2) = (5752, 2) = (5z,52) = (2,2) 4.
Since S is invertible, there exist such positive numbers a and b that
a(z, z) <{z, z>ﬁ < bz, 2),

therefore
alz,z) < {f,z) < b{z, z). (73)
Let us estimate now (f, f) = (S*Sz, $*Sz). Since a? < (S*5)? < b?, we have

a?(z,2) < (£, f) < b*{z,z). (74)

Combining (73) and (74), we obtain the estimate (72). O

Let us call a functional f € H', non-singular, if there exists in H 4 an element z such that the spectrum
of the element (f, z) € A is separated from the origin (then it is possible to assume that the operator
inequality (f, z) > ¢ > 0 holds for some number ¢). The following example shows that there exist singular
functionals with the property (f, f) = 1.

Example 2.3.9 Let A = L* ([0; 1]). Let us define f € H/; as a sequence of functions f = (fx(?)),

_ 1 te 122,
fult) = { 0, for remaining ¢.

The property (f, f) = 1 is obvious. Let us show that the spectrum of the operator (f, z) is not separated
from zero for all z = (z;) € Ha. As the series EZO:1 2} 21, 1s norm convergent, so for any ¢ > 0 there exists

a number n such that || 7,2 . zizk|| < e But then for ¢ < 1/2% the estimate |fx(t)zx(t)| < ¢ holds.
Hence f is singular. The condition (72) for it is false, therefore f is not representable.

Proposition 2.3.10 Let M be a Hilbert C*-module and let f € M’ be a non-singular functional. Then
it 1s representable.
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Proof: Non-singularity and the Cauchy-Bunyakovskii inequality for the Hilbert modules give us the
estimate 0 < ¢ < (f, z) < ||f|lz, z>1/2 from which it follows that the module Span, z is isomorphic to
A. Let us show that the decomp081t10n into a (non-orthogonal) direct sum M = Span 4 2@ Ker f holds.
If # € M, then put a = (f, > {f,®); y =2 — za. Then z = za +y and y € Ker f. The uniqueness of
this decomposition is obvious. Let us denote My = Span, z and My = Ker f and let us choose with the
help [34] (see, also [19, Corollary 2.8.15]) a new inner product in such a way that the submodules A,
and My become orthogonal. Then zL Ker f. Put 2/ = z - (z, z>gl {f,z). Then {f, ) = (#', x>ﬁ, le. fis

representable. 0O

Proposition 2.3.11 Let a C*-algebra A be such that invertible elements are dense in it. Then the rep-
resentable functionals are dense in H'y with respect to the initial norm.

Proof: It is sufficient to verify that non-singular functionals are dense in H',. If f = (f;) € H/; then it is
possible to find in A an invertible element g, such that ||g1 — f1]] < . By putting g = (g1, fa2, f5,...) € HY
and by taking z = e; = (1,0,0,...) € H/,, we obtain that (g, z) is invertible and [|jg — f|| < e. O

Situation with representability of functionals in the general case is more complicated. Let us consider
the following

Example 2.3.12 Let A be a C*-algebra of bounded operators in an infinite-dimensional Hilbert space.
As it is shown in [9] (see also [19, Example 2.5.6]), there exists an isomorphism of Hilbert modules
S:A—H', . Let a € A, f = S(a). Then the condition (f, z) = 0 can be written as

(S(a),z) = (S(a),S(S7'x)) = (a,S7'2) =a* - Sz = 0. (75)

If @ € A is invertible then it follows from (72) that S~'z = 0, i. e. Ker f = 0. But, if f was representable
(f, ") = (z, > with z € H4, then the kernel of f could not Vamsh Therefore the functlonal F=S5(14)is
not representable moreover, it possesses an open neighbourhood consisting also only of non-representable
functionals.

To finish this section we show how the averaging theorem [33] (see also [19, 2.8.12] can be generalized
from compact groups to amenable ones in the case of Hilbert W*-modules. We do it for group Z, but the
idea of the proof is suitable for arbitrary amenable groups.

Theorem 2.3.13 [18] Let M be a Hilbert module over a W*-algebra A, T : M—M be an operator,
all integer degrees of which are uniformly bounded, ||T"|| < C, n € Z. Then there exists an inner product
(- ~>ﬁ equivalent to the initial one and such that the operator T is unitary with respect to it.

Proof: For any normal linear functional ¢ € A., where A, is the pre-dual Banach space for A, let us
define a function f; , on the group Z by the equality

fry(n) = o((T"2, T"y)),

where z,y € M. By the assumption this function is bounded. Let us put

By fixing z and y, we obtain a linear bounded map
gy A—C; G duy.

This map is an element of (A,)* = A. Let us define a new inner product on the module M by the equality
(x, y>ﬁ = ag,y € A. Let us verify that it is well-defined. Its sesquilinearity is obvious. If ¢ € A. is a state
then fy »(n) > 0, hence ¢({z, x>ﬁ) = ¢y > 0. Suppose that (z, x>ﬁ =0 for some z € M. Then ¢, , = 0.
But, as

(x,2) = <T_k(Tkx),T_k(Tkx)> < C'2<Tkx,Tkx>,
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so we have %fxw(O) < fo,e(n) and

1 § 1

Hence ¢y » > %fxw(O) and by the assumption f (0) = 0, i.e. ¢({z,z)) = 0 for an arbitrary state ¢.
But then (z,z) = 0, hence = 0. Therefore (-, '>ﬁ is an inner product. The property (T, Ty>ﬁ = {x, y>ﬁ
is obvious, therefore the operator 7' is unitary. The equivalence of (-, -) and (, ~>ﬁ follows immediately
from the estimate )

a(x,@ <(T*x, TFz) < C*x, ),

which 1s valid for all k. O

3 Theorem of Dixmier and Douady for /5(A)

3.1 Strict topology

Definition 3.1.1 Let A — B(H) be a non-degenerate faithful representation of a C*-algebra A. By
striet topology on B(H) we call the topology satisfying one of the following (obviously, equivalent) con-
ditions

(1) it is the weakest topology, for which the maps
re : B(H) = B(H), 7rq:xw— za, lo : B(H) = B(H), l4:z~ ax, re€B(H),a€ A
are continuous,

(ii) it is the topology generated by the system of seminorms

v vateea,  vi(e) =llzall,  vg(x) = [laz]].

Usually this topology is denoted by § in view of the analogy with the Stone-Cech compactification
(cf. 1.2.12). For example, by [X]s we denote the maximal ideals space of the closure of the algebra C'(X)
in B(H) with respect to the strict topology, and the corresponding limit we denote by f—lim.

Proposition 3.1.2 The set M(A) is strictly closed,
[Als C [M(A)]p = M(4).

Proof: Let the net {#,}aca C M(A) be strictly convergent to € B(H). Then for any a € A there exist
the norm-limits
L{a) :=limzqa, R(a) := limaz,

defining maps the L, R: A — A. As
al(b) = a lim(zyb) = lim(az,b) = (lim(axa)) b= R(a)b,

so the pair (L, R) is an element of DC(A), i. e. a double centralizer. Identifying double centralizers with
multipliers, by Theorem 1.2.11 we obtain y € M(A). Then z, BN y. Indeed,

ya — xqa = L(a) — xqa — 0, ay — ary = R(a) —ary — 0

with respect to the norm. So, M(A) is S-closed. DO

Lemma 3.1.3 The net {eq}aca is an approzimate unit for A if and only if M(A) 5 1 = f-limg eq.
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Proof: The result immediately follows from the definition. O

Proposition 3.1.4 (i) The conjugation in M(A) is -continuous.
(i1) Multiplication in M(A) by a fized element is 3-continuous.

(i) Multiplication in M(A) is f-continuous on bounded sets.

Proof: Let us consider an arbitrary element € M(A) and let z, Ly & Then

Toa — za, ar, — axv for any a € A,
whence, after conjugation,
bx?, M)bx*, beﬂx*b for any b € A, (b=a"),
1. e. 2}, NS
8

Let now y € M(A) be a fixed element and #, — . Then
I(zay)a = (zy)al| = [Jea(ye) —2(ya)]| — 0,  [la(zay) — a(zy)[| < [laza — az]| - |ly]] — 0

for any a € A. It means that z,y N xy.

Let now BN z, ||ra|| < ¢p for any o € A, and y, N y, llyy|| < ¢y for any v € T'. Then for any
a € A and any ¢ > 0 there exists a pair (ap, 7o) such that for any pair («,v) > (ag,v0) € A X T (i. e. for
« > ag and y > 7p) one has

I(zays)a = (zy)all < l[zayya — zayall +[[2aya — wya|| < o -[lyya = yal| + [lzalya) — z(ya)|| <e,

la(zayy) — alzy)ll < llazayy — azyy|| + llazyy — azyl| < [laza — azl| - ¢y + ||(az)y, — (az)y[| <e.

It that =6— 1 o .
means that (zy) = 3 (Ow)lgtxr(x Yy)

Theorem 3.1.5 The algebra of multipliers M(A) coincides with the 3-closure of A in B(H),

Proof: By Proposition 3.1.2 it is sufficient to prove that M(A) C [A]s. Let {eq }aeca be an approximate
unit for A. By Lemma 3.1.3 e, Fie M(A), as it is bounded. Since e, N 1, we have by item (ii) of
the previous lemma that for each @ € M(A) the net A 5 ze, i) rx-1=2. 0O

Definition 3.1.6 Let A — B(H) be a non-degenerate faithful representation of a C”-algebra A. We
call by left strict topology on B(H) the topology satisfying one of the following equivalent conditions:

(1) it is the weakest topology, for which the maps
re : B(H) = B(H), 7rq:2— za, reB(H), ac A
are continuous,

(ii) it is the topology generated by the system of seminorms
{viteea,  va(z):=[lzall.
For the left strict topology it 1s possible to prove the following analog of the Theorem 3.1.5.

Theorem 3.1.7 The algebra of left multipliers LM(A) coincides with the closure of A in A" with respect
to the left strict topology.
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Proof: This statement can be obtained by the same way as in 3.1.5, 1t is sufficient to take only a “half”
of the argument. 0O

For Hilbert modules it is natural to consider the following two topologies on the space of bounded
homomorphisms.
Definition 3.1.8 Let M be a Hilbert A-module. The strong module topology on End(M) is the
topology generated by the system of seminorms

{s" hem,  s"(2) = [le(h)ll, » € End(M),
and the *-strong module topology on End” (M) is the topology generated by the system of seminorms
{s" sl bhem,  8"(x) =z, sl(x) = |l2"(h)]| = € End"(M).

Proposition 3.1.9 The strong topology is not weaker than the x-strong module topology on K (M) (hence
by Theorems 3.1.5 and 2.1.1 everywhere on End"(M) ).

The left strong topology is not weaker than the strong module topology on K(M) ( hence by Theo-
rems 3.1.7 and 2.1.2 everywhere on End(M) ).

The corresponding topologies coincide on bounded sets in K(M).
Proof: We shall check equivalence of appropriate seminorms. We have
s (@) = lz (W] = llek(g)l] < llzkl] - lgll = llgll - v (=)
for some k € K(M), g € M (see [19, Lemma 2.2.3]) and
si(@) = e (Wl = [lz" k(@) < [l2*kl| gl = k% - llgll = gl - v (2)
for some k € K(M), g € M. Conversely, let k& € K(M) be an arbitrary element and z, — 0 with

respect to the strong module topology, being bounded: ||z4|| < ¢. Then for any £ > 0 there exist vectors
hi,...,hy and ¢1,..., 9, from M such that

& €
and ag big enough so that for a@ > ag
lea(hi)ll < ——,  i=1,...,n.
n - lgil|

Then for these «

n n
9 9 9
Vit (ea) = leakll < = llaall + Y lleabn gl S ¢ =+ > lleahill llgill < e +n - — g Mleill < 2.
K3

i=1 i=1 || ||
Similarly, if £, — 0 in the *-strong module topology then we can additionally require that for a > «aq

9
- Al

25 (9l <

Then

n n n
€ € €
vi (2a) = |lkzal] < ol + > b, gall < e s SNl -llengill < e+ mllm” =2e.
i=1 i=1 i=1 ¢

Proposition 3.1.10 Let A and B be C*-algebras and ¢ : M(A) — M(B) be a morphism such that

B C ¢(A). Then ¢ is strictly continuous. In particular, the extension " from Proposition 1.2.21 is the
extension by continuity, thereby, is unique.
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Proof: Let z, Ly rin M(A) and b be an arbitrary element of B. Then b = ¢(a) for some a € A. The
nets z,a and az, converge with respect to the norm in A. The map ¢, being a morphism of C*-algebras,
does not increase the norm, therefore ¥(yq.a) = ¥(2q)b and ¢(az,) = bip(x,) are the Cauchy nets, so

they converge with respect to the norm. Since b was arbitrary, it means that ¢ (z4) N y € M(B). Thus,
for any O’ € B, b' = ¢(da’)

yb' = Slim(x,)0 = lim ¢ (z )b = limy(zaa’) = ¥(za’) = ¢(z)b
holds. Thus, y = ¢(z). DO

The similar theory can be developed for quasi-multipliers, if one gives the following definition.
Definition 3.1.11 TLet A — B(H) be a non-degenerate faithful representation of a C*-algebra A.
Quasi-strict topology on B(H) is the topology satisfying one of the following equivalent conditions:

(1) it is the weakest topology for which the maps
Qav : B(H) = B(H), Qu:x— axb, reB(H), a,be A
are continuous.

(ii) it is the topology generated by the system of seminorms

Wabta, bea, Vap() 1= ||axb||.

3.2 Proof of the main theorem

Let us realise [5(A) as the completion of the algebraic tensor product H © A = L2([0,1])¢A completed
with respect to the A-inner product (f @ v,9 ® 8) = {(f, ¢) " 3. We suppose here that the inner product
on L?([0,1]) is linear in the second entry.

Lemma 3.2.1 [4, p. 250]. There exists for each t € [0,1] a closed linear subspace Hy C H and for each

t € (0,1] a linear isometry Uy : Hy — H such that
(i) the orthogonal projection Py onto Hy is strong continuous int € [0, 1],

(ii) the operators Uy P, and U are strong continuous in t € (0,1],

(i) Hy=H, Hy=0, U;=1 10O

Let us remind that in [4] the subspaces are defined in the following way:
He:={feL*([0,1])| f(x) =0 for z>t}.

Lemma 3.2.2 If F; — F, t — 0 with respect to the strong topology in B(H), being bounded, then
F,old g = F®Id 4 with respect to the left strict topology.

Proof: It is sufficient to prove that
[(Fr@Ida — F@Id )b || =0 (t —0),

where
N

Ory(z) =a(y,2), o= hwi@B, #€C, BeA |l=Iyl=1,

i=1
and {h;} is an orthogonal basis of H. Then for z = >, hiz; @

N
1(Fr ©1da = F @ 1da) boy ()] = [| D (Fr = Fhiz: © Biy, 2)]|
i=1

1s less then ¢ if ¢ is so close to 0 that

1
(£ = F)hisi| - |IGil] < 7 @
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Lemma 3.2.3 Let a set G(t) be uniformly bounded (by a constant C'), G(t) = G and S(t) = S (t = 0)
in the left strict topology. Then G(1)S(t) = GS (t = 0) in the left strict topology.

Proof: Let £ € K4 be an arbitrary operator. Then Sk € K4 and

[|S(t)k — Sk|| — 0, [[(G(t) — G)(Sk)|| = 0 (t —0).
Hence
IG(@)S(t)k — GSk| < ||(G(t) — G)Sk + G{)(S(t) = S)k|
< (G@) = G)Skl|+ CI(S(E#) = S)k|| =0 (£ = 0).
O

Theorem 3.2.4 The unitary group U of operators in l3(A) is contractible with respect to the left strict
topology.

Proof: For any U € U and t € (0, 1] we define
(U, 1) := (Idjya) — P @ lda) + (U7 @1d4) U (U @ 1d 4) (P © 1d 4)

and

(U, 0) :=U.

The operator ®(U, ), ¢t € (0, 1] defines an identity mapping H ® A and coincides with the restriction
of the unitary map (Ut_1 @Id 4) U (U @1d 4) on H; @ A. Therefore

(U t)eU, &U,1)=U.

Thus, as U} = Ut_l, so all operators admit an adjoint.
From Lemma 3.2.3 it is clear that ® is continuous in ¢ € (0, 1], and, similarly, in (U,t). Indeed, let
(U ) el x (0,1] tend to (U,t) €U x (0,1]. Then for any k € K4

19(U, 1)k — S(U #)k|| = ||(1d 1y 4y — Pr @ 1d 4)k + (U7 @1 4) U (U @ 1d 4) (P @ 1d 4)k

—(Id () — Pr @1d )k — (U7 ©1d 4) U (Up @ 1d 4) (P @ 1d 4) k||
<|WP:@Tda — P @Td k|| + [[(U7  @1d a) — (U7 @Td 4)] U (Ur @ 1d 4) (P @ Id 4) k||
(U @1d 4) [U = U (U @ 1d 4) (P, © 1d 2) k]|
(U7 @1d ) U [(Uy @1d 4) — (Up @1d 4)] (P @ Id 4) k]|
H(Ut @1d 4) U (Up @1d 4) [(Pr @ 1d 4) — (P © Id 4)]k]|
<(Pr@lda— P old k|| + (U7 @1da) = (U7 @1d 4)] kaf| + [[[U = U k|
(Ve @1d 4) = (Upr @ 1d a)] ks[| + [|[(Pr @ Id 4) = (P @ Id 4)]k[| — 0

by Lemma 3.2.2. Here kq, k2 and ks are fixed operators from K 4. Let now (U’ ') € U x (0,1] tend to
(U,0) €U x [0,1]. Then Py — 0 with respect to the strong topology, Prr @ Id 4 — 0 with respect to the
left strict topology by Lemma 3.2.2. Therefore for any k£ € K4

(
)

||(Ut71®IdA)U(Ut/®IdA)(Pt/®IdA)k|| < |[(Py@1d 4) k|| — 0, [|®(U,t)k|| = 0. a
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3.3 Some generalizations

Let us remark that in the proof of Theorem 3.2.4 we used only the boundedness of the set of invertible
operators {U}, but not the unitarity. Thus, actually we have proved the following statement.

Theorem 3.3.1 Fvery bounded set of invertible operators in Hilbert space H is contractible in invertibles
with respect to the strong topology.

Every bounded set of invertible operators from GL (resp. GL™ ) is contractible in GL (resp. GL™ ) with
respect to the left strict topology. O

Lemma 3.3.2 Let S be a compact set and
f:S— B(H), s Fy
be continuous with respect to the strong topology. Then {||Fs||} is bounded.

Proof: As S is compact, so {||Fsx||} is bounded for any # € H by some C(x). Therefore, by the uniform
boundedness principle [5, 11.3.21] there exists a constant C' such that

[|Fsz|| < C, V seS, ze B (H).

Therefore ||Fs|| < C. O

Lemma 3.3.3 Let S be a compact set and
f:S > Endalz(A) = LM(K 4), s+ F
be continuous with respect to the left strict topology. Then {||Fs||} is bounded.

Proof: Let « € l2(A) be an arbitrary element. Let us choose & € K and z so that # = kz (see [19,
Lemma 2.2.3]). Then s — Fix is continuous: we apply the definition of the left strict topology to the
inequality

| Fow — Fexl| = || Fskz — Fekz|| < [[Fok — Fek]] ||=]]
The proof 1s finished similarly to 3.3.2. O

Now from Theorem 3.3.1 by Lemma 3.3.2 and Lemma 3.3.3 we obtain the following statement.

Theorem 3.3.4 The group G(H) of invertible operators in a Hilbert space H is weakly contractible (i. e.
the homotopy groups m;(G(H)) = 0) with respect to the strong topology.
The group GL (resp. GL™) is weakly contractible with respect to the left strict topology. O

Remark 3.3.5 We suppose that the results of this section in the part, concerning Hilbert spaces, were
known earlier, but we have not found them published anywhere.

4 Multipliers and Hilbert modules. The commutative case

4.1 Description of modules

The following results describing the modules [2(Co(X, A)) and spaces of operators on them in terms of
spaces of maps are obtained by combination and small modification of [7, 1].

Definition 4.1.1  Let us denote by Cy(X, M) the space of continuous maps X — M tending to zero
at infinity and by Ag(X) the space of continuous maps X — A, tending to zero at infinity.

Notice that Ag(X) is a C*-algebra with respect to the sup-norm and Cy(X, M) is a Hilbert Ag(X)-
module with the inner product given by (f,g) = (f(x), g(x)) »,, where f,g € Co(X, M), x € X.
Definition 4.1.2  Let us call a pair (X, M), where X is a locally compact Hausdorff topological space,
and M is a Hilbert A-module, compatible, if the following conditions are satisfied:
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(i) the map
ji Moo Co(X) = Co(X, M), Jjm® f)(z) = f(x)m, meM, [feCyX)
is an isometric Ag(X)-module isomorphism,

(ii) let ¢ € Co(X, M) be such that p(xo) = 0 for some zo € X, and F' € End4,(x)(Co(X, M)) be an
arbitrary operator; then (F)(z) = 0.

Remark 4.1.3 Here and further by a tensor product we always mean the projective tensor product (in
the case of C*-algebras called also spatial or minimal). However in (i) we use the tensor product with a
commutative algebra which is nuclear, so all C*-norms on this tensor product coincide. For more details
see [25, §6.3].

Remark 4.1.4 Generalizing [7], we shall prove in the following two lemmas that the pair (X, [2(A)) is
compatible (in [7] the case of compact X is considered). Let us remark that a more weak compatibiluty
of an arbitrary pair (namely, if in (ii) we replace End by End*) follows from the results [1]. Thus, the
results [7], which we will prove in Theorem 4.2.3 in the part, concerning the operators admitting an
adjoint, can be deduced from the results of [1] using the identification of multipliers of (M) with
End’ (M).

Lemma 4.1.5 The map
J i la(Ao(X)) = Co(X, 12(4)),  j(N(@) == (fiz), f2(2)..), [ =(f1,[-.) € 12(Ao(X))

15 an isometry.

Proof: It is obvious that j is an isometric inclusion. Let us show that it is an epimorphism. Let ¢ €
Co(X,15(A)) be an arbitrary element. Then, as

1@l < @)l MI(e(@)i = (p()ill < [le(z) = e,

so we have (p(z)); € Ag(X). It is necessary to verify the convergence of the series ). (¢(x)); (¢(x)); with

2
respect to the norm. Let € > 0 be an arbitrary number and let K C X be a compact set such that for

any y € Y := X \ K the inequality ||¢(y)|| < € holds. For each point # € K we choose a number n(xz)
such that

Since the map
X 25 1,(4) 2 Lt
is continuous, we can find for each # € K an open neighbourhood U, in K such that for each z € U,

oQ

(p(2))i (p(2))i <e.
)

i=n(z

Due to compactness of K we can choose a finite subcovering Uy, ..., Uy, and put n := max{ng,,...,ny_}.
Then for any m > n

sup [Z(@(l‘))?(@(l‘))i < maX{Sup [Z(@(l‘))?(@(l‘))i] , Sup lZ(@(l‘))?(@(l‘))iH

rzeX

< max< sup |[e(z)]] , max sup E (p(x)i (e(2))s < max{g , maxa} =ec.
z€Y J=1l gevu; i=n(z;)
- 7

By the Cauchy criterion the series is convergent. 0O
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4.2 Description of operators

Lemma 4.2.1 Let ¢ € Cy(X,l2(A)) be such that ¢(xg) =

0 for some z9 € X, and F €
EndAD(X)(CO(X,lz(A))) be an arbitrary operator. Then (F)(xq) = 0.

Proof: By [27] (see also [19, 2.1.4]) (Fp, F) < ||F||*(¢, ), so

(Fo(xo), Fe(xo)) = (F, Fe)(xo) < IF|* (e, ) (xa) = IF]*(¢(x0), o(x0)) = 0. O

Definition 4.2.2 Let us denote by B(X, End 4(M)) (resp. B*(X, End’ (M))) the algebra of bounded
continuous maps from X to Ends(M) = LM(K(M)) equipped with the left strict topology (resp.
the algebra of bounded continuous maps from X to End% (M) = M(K(M)) equipped with the strict
topology). By Proposition 3.1.9 it is possible to consider the strong module (resp., x-strong module)
topology instead of the left strict (resp. strict) topology. We equip these algebras B and B* with the
sup-norm.

Theorem 4.2.3 Let (X, M) be a compatible pair. Then
(i) the Banach algebras End 4, (x)(M @ Co(X)) and B(X, End4(M))) are naturally isomorphic,
(ii) the C*-algebras End}  xy(M @ Co(X)) and B*(X, End}y (M))) are naturally isomorphic.

Proof: In correspondence with the condition (i) we can identify M @ Co(X) = Co(X, M) and define
the map

J:B(X,Ends(M))) = End g, x)(Co(X, M), (J(D)p)(x) = D(x)(p(x)), z€X, ¢&Co(X, M).

First of all, let us show that J(D)y € Cy(X, M). For this purpose it is necessary to verify the continuity
and vanishing at infinity. Since ||D(#)|| is bounded, say, by a constant C', we can choose a compact set
K C X such that ||¢(2)]] < ¢/C outside K. We obtain that

(D)) ()] = [|1D() (p(2))]] < C- % =e  outsideof K.

Vanishing at infinity is established. To verify the continuity, we choose arbitrary z € X and ¢ > 0.
Let us find an open neighbourhood V; of the point = in X such that for any y € Vi the estimate
[lo(x) — ¢(y)|| < ¢/C is satisfied. By the definition of continuity with respect to the strong module
topology, for (fixed element) ¢(z) € M there exists an open neighbourhood V3 of the point z in X such
that for any y € V5

|1D(2)(¢(x)) — D(y)(e(z))llm < e
holds. Then for any y € U := Vi N V4

1(J(D)p)(z) = (J(D)e)(W)llm = [ D(2)(¢(2)) — D(y)(2(y))llrm

< ID(@)(p(x)) = D) (e(e))lla + 1D (p(2) = D) pW)llm <e+C- % =2

is valid. So continuity is checked out.
The linearity over C and Ag(X) of the operator J(D) is obvious. Since

17(D)¢llco(x,m) = sup [[D(z)((2))[lm < sup [[D(2)[[Enam - sup [[o(2)|lm < C - flelloyx,m),
reX reX reX

the operator J(D) is bounded. Thereby the map J is well-defined. It is obvious that it is C-linear and
(J(DC)p)(x) = DC(x)(p(x)) = D(2)[C(x)(p(2))] = D(@)[(J(C)p)(2)] = (J(D)J(C)p)(x),

so that J is a homomorphism of algebras. Let us demonstrate its (algebraic) injectivity. Let for any
¢ € Cy(X, M) and any = € X the relation (J(D)y)(x) = 0 be true, i. e. D(z)p(x) = 0. Let us remark
that passing to the one-point compactification X+ of the space X, we can define on the normal space
X+ a continuous function x® : XT — [0,1], equal to 1 at the point x5 and vanishing at oo. Then for
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any m € M the function x%0 () := mx®°(x) tends to zero at infinity. Since 0 = D(x0)x50 (20) = D(xo)m
and m and g are arbitrary, the operator D(xzg) = 0 for any zp, i.e. D = 0.

Let us remark that the above mentioned estimate, indicating the continuity of J(D), gives also the
inequality ||J|| < 1. Thus, the first part of the theorem will be proved, if we should manage to define a
linear map

S End g, (x) Co(X, M) = B(X, End 4 (M))), [|S]] < 1.
Let us put
(S(T)(=))(m) = (Tp)(x), (76)
where ¢ is a (non-uniquely defined) map ¢ € Cp(X, M), satisfying the condition ¢(x) = m. Let us verify
the independence of the definition of this non-unique choice of ¢. Let ¢(2) = 0. Then by the property
(ii) for any operator T one has (T¢)(z) = 0 and we have proved that (76) is well-defined. Once more the
linearity of S(T')(x) is obvious, so we should verify its boundedness. We have

HCS(T) () ()] = [1(Tx5) (@)1 < T llena(cox,m)) - X llcox,amy = 1T 1[Ena(cox,am)) - |l a1

This estimate gives, at first, boundedness of S(T')(z), secondly, the condition of boundedness not depend-
ing on x, and thirdly, the condition ||S|| < 1. To complete the proof of the first part of the theorem, it is
necessary to verify the continuity of S(7')(z) in « with respect to the strong module topology. Let # € X
be an arbitrary point, € > 0 be an arbitrary number, m € M be an arbitrary (fixed) element. Let us find
an open neighbourhood U of the point x such that for any y € U and some map of the form x¥,

(T ) (=) = ()Wl < &
holds. Then for any y € U
1S(T) (w)m = S(T)(y)mll = [[(Txn) (=) = (Txn) Wl < e

The first statement is proved.
Let now J' = J B*(X,End*, (Mm)))- Then for any D € B~ (X, End’ (M)))

(J'(D)p), ) () = (S (D)p) (), ¢ (2)) = ((D(2)(p(2)), P(x)) = {p(x), (D(&))" (¢(2)))

= (p(x), D™ (x)(¥(x))) = (p(x), [J (D) ()](x)) = (g, J'(D")(¥))(2),
so that Im J" C End} | (x) Co(X, M).
To complete the proof of the second part, we need to verify, at first, that

Co(X,M) - B* (Xa EHdZ(M))),

ImS|EndZD(X)

i. e. that for each # € X the operator S(T)(#) admits an adjoint, and secondly, that S(7')(z) is continuous
with respect to the x-strong module topology.
The first follows from the following calculation

(S(T)(@)ym,m") = (Tx) (@), X (2)) = (TX3), X ) () = (X, T ) ()
= (6 (@), (T™x) (@) = (m, S(T7) (2)m'),  m, m" € M.

Moreover, it implies that S is involutive. Let now € X be an arbitrary point, € > 0 be an arbitrary
number, m € M be an arbitrary (fixed) element. Let us find an open neighbourhood U of the point »
such that for any y € U and for some map of the form x;,

(T (@) = (T xm) ()] < e
holds. Then for any y € U
1S(T)" ()m — S(T) (y)ml| = [I(T"xm) (@) = (T"x) (W)l <e. O
Corollary 4.2.4 The defined above homomorphism J realizes an isometric isomorphism of the groups
GL (Ao (X)) = B, (X, GL (A4)), GL" (Ag(X)) = B;(X,GL"(4)),

where o indicates that we consider functions with bounded pointwise inverse.
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Proof: Since J is a homomorphism of algebras, the statement immediately follows from its unitality. O

Let us remark that 1t is necessary to be cautious while identifying different classes of operators in the
standard Hilbert module over a commutative C*-algebra with continuous sets of operators of same class
on a Hilbert space. For example, though an operator of a finite rank on the Hilbert module H¢(x) defines
a continuous set of operators of finite rank on a compact space X, the inverse statement is not true, as
can be seen from the following example, recently obtained by D.Kucerovsky [14]. Tt is interesting that
this example is of a topological origin. Let us denote by L, the standard tautological vector bundle over
the projective space CP(n). Necessary information about bundles and their characteristic classes can be
find, for example, in the books [10, 11]. Let T'(L,,) be the Hilbert C'(CP(n))-module of sections of the
bundle L,,.

Lemma 4.2.5 ([14]) Let K be a compact operator with algebraically n-generated image on the Hilbert
C(CP(n))-module T'(Ly,). Then there exists a point x € CP(n) such that at this point one has K(x) =0,
where K(x) € C(CP(n),K) is the set of compact operators defined by the operator K.

Proof: The operator K has the form >,_, sx(ry, -), where sj, ) are continuous sections of the bundle
Ly. Let E = L, ®-® L, be the vector bundle equal to the direct sum of n copies of the bundle L,,. Then
$1 P ... D s, 18 a section of the bundle E. Let us calculate the higher Chern class of the bundle E:

Cn(E) = Cn(Ln ©- D Ln) = Cl(Ln)n 7£ Oa

as ¢1(Ly) # 0. But it means that any section of the bundle E vanishes at some point. In particular, at
some point # € CP(n) the section s; @ ...d s, vanishes, therefore all sections s;, 4 = 1,...,n vanish at
the point . 0O

Example 4.2.6 ([14]) Let

X = ]O_o[ CP(n)

be the disjoint union of projective spaces, Xt be the one-point compactification of the space X. Let us
define a Hilbert C'(X*)-module H as a direct sum of spaces of sections of the bundles L,,, H = &5, T(Ly,).
The module H is countably generated and, therefore, can be realized as an orthogonally complemented
submodule of the standard Hilbert module H¢(x+). Let us define a compact operator K on the module
‘H by the formula

1
[((69?7,0:15”) = 69?10:1 gsna

where s = @22, s, € H. The operator K defines a continuous set of operators of rank one over the space
Xt however, as the set K(z) does not vanish at any point of X, so the operator K is not an operator
of a finite rank on the module # by Lemma 4.2.5. At the same time, as the set K () is continuous, so
K € K(H). Extending the operator K by zero, it is possible to obtain a compact operator on the module
Hc(x+) possessing the same property.

5 Kuiper theorem for Hilbert modules

5.1 Preliminary notes

Let us denote, as well as earlier, through End 4{3(A) the Banach algebra of all bounded A-homomorphisms
of Hilbert A-module l2(A), and through End%ls(A) the C*-algebra (cf. 2.1 of [19]) of operators, admitting
adjoint. Let GL (A) and GL"(A) denote the correspondent groups of invertible operators. The question
about the contractibility of general linear groups is very important for K—theory to construct classifying
spaces in terms of Fredholm operators. To this problem a series of papers is devoted: [21, 12, 32, 22]. The
author used these results to construct the classifying spaces of KP9(X; A) in [31]. In paper [3] J. Cuntz
and N. Higson proved the contractibility of GL*(A4) for A with strictly positive element (or, equivalent,
with countable approximate unit = o-unital).

In the present chapter, based on preprint [35], we give a simple proof of the theorem of Cuntz and
Higson, distinguished from original, and based on generalization of a construction of homotopy from [26].
We also show, that the similar reasonings are aplicable to prove the contractibility GL (A) in some special
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cases, in particular, for A, being a subalgebra of algebra of compact operators in separable Hilbert space,
and for A = Cy(M), where M is a finite-dimensional manifold.
We finish with the section with a detailed exposition of the modified Neubauer homotopy.

It is known, that the set of invertible operators in a Banach space is open with the respect to the
topology of a norm, while the set of bounded A-homomorphisms is closed in the set of all endomorphisms.
Thus, GL is an open set in a Banach space. The similar argument is valid for GL”. According to the
Milnor theorem [20] such sets have the homotopy type of CW-compexes, and, therefore, by the theorem
of Whitehead, strong and weak homotopy triviality are equivalent for them. We have proved the following
statement.

Lemma 5.1.1 To prove the contractibility GL (resp., GL* ) it is sufficient to verify the following. Let
f:58 = GL be a continuous map of a sphere of arbitrary dimension. Then f is homotopic to the map to
the single point Id € GL . The similar statement holds for GL™. O

Let us produce one more reduction. To consider simultaneously case GL and case GL*, we shall enter

a common notation: G := GL (resp., GL"), £(M) := End 4 (M) (resp., End’ (M)).

Lemma 5.1.2 (a variant of the Atiyah theorem about small balls) Let f : S — G be a continuous map
of a sphere of arbitrary finite dimension. Then f is homotopic to a map f' such that f'(S) is a finite
polyhedron in £(12(A)), laying in G together with the homotopy.

Proof: Let ¢ > 0 be such that e-neighborhood of the compact set f(S) lays in G. Let us choose a fine
simplicial subdivision of the sphere S, such that diam(f(c)) < /2 for any simplex o of this subdivision.
It is possible to do this, since S is compact. Let f’ be a piecewise linear map, being the extension of
the restriction f to the O-dimensional sceleton. Thus diam(f'(¢)) < diam(f(c)) < /2 for any s. For
any point s € S there exists a vertex s; € S, such that ||f(s) — f/'(s:)|| = ||f(s) — f(si)|| < €/2 and
[|1F(s) — f'(si)|] < /2, hence the segment [f(s), f'(s)] C G for any point s € S. Therefore, the linear
homotopy f:(s) = tf'(s) + (1 —¢) f(s) is in G. Passing to a subdivision of f/(S), we obtain a structure of
simplicial complex. O

Remark 5.1.3 Let us remark, that this argument is not valid for other topologies, which we shall
consider. For example, with the respect to the strong topology on operators in a Hilbert space, the
sequence Id,, converges to Id, where Id , has the matrix diag(1,...,1,0,0,...) (unit up to n-th place).
So that with the respect to this topology the general linear group is not an open set.

One more step from the original work of Kuiper [15] is universal.
Lemma 5.1.4 Subset V C G, defined as
V={9€Glglg =1dp, g(H:1) = H1},

where

l5(A) = H' & Hy, H' = Hy =15(A),

15 contractible in G to 1 € G.
Proof: Let us represent H’ as

H =H & Hs& ..., H; 2 1,(A),
so that [y(A) = H1® Hy® Hz P . . .. The matrix of g with the respect to this decomposition has the form

m(L,)=u=glg,, m(,i)=1€&H;),i>1, m(i,j)=0,4i#],
g = diag(u,1,1,1,...) = diag(u,u u, 1,u" u, 1,.. ).
We want so to define a homotopy ¢; € G, t € [0, @], in such a way that
Jgo=1g9, gﬂ/z:diag(u,u_l,u,u_l,u,...), gr = diag(1,1,1,..) =1d €G.

For this purpose let us put for ¢t € [0, 7/2]

me(1,1) = u,
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fori>1
my (24, 20) me (24,20 4+ 1) [ cost —sint u 0 cost sint u™!
me(20+1,20) mp(20+1,2d+1) J — \ sint  cost 0 1 —sint cost 0 1

me(r,s) =0 for remaining r, s.

<
N

Let us put for ¢t € [7/2, 7]

me(20— 1,20 — 1) mp(26—1,24) \ _ [ cost —sint u™! 0 cost  sint u 0
me (24,20 — 1) my (24, 20) T\ sint  cost 0 1 —sint cost 0 ’

me(r,s) =0 for remaining r, s. a

—_

Lemma 5.1.5 Subset W C G, defined as

W={g9€Glglg=1dg },

where

l5(A) = H' & Hy, H' = Hy =15(A),

15 contractible inside G to

V={9€Glglg =1d g, g(H) = Hr}.

Proof: With the respect to the decomposition l2(A) = H' & H; we define a homotopy by the formula

pea= (A0,

7(s)
_ (1 Bl-1
Fils) = ( U )
Let the operator ( i ) be the inverse to ( é 5 ) Then

whence
p=1, x =0, =&y =1,

and

((1) w<1€—t>)((1) ﬁ(ly—t)):<é 6(1—15);(1—01/)7):((1) (1—1t>~0),

((1) ﬁ(l;%)(é wug—t)):(é wu—w%ﬁ&(l—w):(é <1—1t>~0).

Hence, the homotopy lies in G. 0O
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5.2 Technical lemmas

Let through K4 be denoted the C*-algebra of A-compact operators on l3(A4), through LM(K,) =
Endals(A) the algebra of the left multipliers, through M(K 4) = End’l2(A) the C*-algebra of multipliers
and through QM(K 4) = End4(l2(A),l2(A)") the space of quasi-multipliers (see [2, 17, 9, 13, 24, 27] and
§§ 2.1 and 2.2).

Let o be a strictly positive element (see, e.g., § 1.1 of [19]) in o-unital algebra A, o; := ¢;(«) be a
countable approximate unit, where ¢; has the graph

|
0 1 1
i =1

. 1/2
1/2 ,Z[JIHZZ3I/IL¢)2:Q2/ , TAK 9TO

wi = (e — ;1)
wioy =ow; =0, j=1+2,143,. .., wiog = oy =wy, j=1,...,i—1 (77)

Since there is no unit in A, the notion of “standard base” {e;} of module l2(A) makes no sense. Never-
theless, it is possible to define properly elements e;v for any v € A, namely,

ey :=(0,...,0,v,0,..)), ~ at i-th place.
Let us denote the correspondent orthoprojections on these one-dimensional submodules E; through @);.

Lemma 5.2.1 The injection i : A = l2(A), defined by the formula

v epawir, k(1) <k(2) <k(3) < ...,

remain the inner product and admits adjoint. In particular, the tmage Imi is defined by a selfadjoint
projection of the form

p=1i. (78)
Proof: First of all,

(i, iy)

<ZZ Ck(HWil, El Ck(HWiY

) = Y ileniwit, ex(iywiy) =
Yo wiwiy = 2%y = (x,y).

Let us consider operator ¢ : {3(A) = A of the form
t(z) = Z(ek(i)wi, zy = Zwizk(i).
i i
This series satisfies to the Cauchy criterion: if number m is so great, that

oQ

Z zlz <4,

i=m+1
then

IS izl < I W22 1Y st w12 < 1-6

134



The same reasoning for s = 1 implies the relation ||[t(2)|] < ||z]]. Also, (iz, z) = {x,tz), 1. e., t = i*.
Let us consider arbitrary elements z,y € A. Then
(ie) y = (e, y) = (x,dy) = (x,y) = 27y
Since y is an arbitrary element, we conclude, that :*iz = 2 and "¢ = Id . Hence,
Wit = i,
i. e., p is a projection. Since i*¢ = Id, ¢* is an epimorphism and Im¢ = Imp (see also [16, Sect. 3]). DO
We need some more strong variant of this lemma.
Lemma 5.2.2 The injection J : l2(A) = [2(A) under the formula

_ .2
(a1, aq,...) — E g Vijag, (vij, vij) = Wy, vij € M j),
7 g

ZQ(A) =M &M ..., M, :{(0,...,O,Cls(r),...,as(r+1)_1,0,...) },
(R, 15 (1, 2), k{2, 1)5 K(1,3), K(2,2), (3, 1); . = {1,2,...,
remains the inner product and admits an adjoint. In particular, the image is defined by a selfadjoint
projection of the form JJ*.

Proof: Let = (a1, az2,...) € 2(A), y = (b1,ba,...) € 2(A). Then
(Ja, Jyy = (00 2vijag, 25 2 vigh) =32, 3 ajwiby = 325 a5 (3o, wi) by =
= Zj aib; = (x,y).
In particular, J is bounded. Let us consider operator T : l2(A) — [2(A) of the form
T(2) = (tr,t2,.. ), b= (vij,2).
For this series the Cauchy criterion is carried out: let number N = N (z) be so great, that ||[(1—pn)z|| < §
and m be so great, that s(k(m,j)) > N (j is fixed), (by [27], see also [19, 1.2.4])

Il Z(vz’j,zﬂl = <Z vij, (1 —pN)Z> I < <Z vij, Z vm’>

For any r by [27] (see also [19, 1.2.4]) the following inequality holds

D (i) Y (i, 2) = <Z vij,qu> <Z vij,qu> < (%, 452),

i=1 i=1 i=1 i=1

1/2
N =pn)zl] <146

where g¢; is the orthoprojection on ; My (; ;). Hence
Gty <{gjz,q52),  (T(2),T(2)) < (z,2).

So, T' is bounded, and the fact, that it is the adjoint for J is obvious.
The proof of the second statement literally repeats the reasoning from the previous lemma. 0O

Let us consider an operator /' € GL. Then, with the respect to the standard decomposition l5(A) into
the direct sum of E; = A, the operator F' has a matrix F; with the elements from LM(A). If F € GL*,
FJZ € M(A4), since (F*); = (FZ])* Let us note, that for any b € A and any F € GL holds ||F7§10(b)|| -0
as i — 0o, because {F}, (0)}52; = F(em,b) € lo(A). For F € GL* holds 1F7*°(b)[| — o0 as j — oo as
well, as it is proved in the following lemma.

Lemma 5.2.3 Forany F € GL™, ¢ > 0 and e,y there exists a number m(k), such that for any m > m(k)
and p € A with ||| < 1 holds

{exy, Femo)ll < e
Proof: Let us consider the bounded operator F*. Since F*egy € {3(A), there exists a number m(k), such
that
(1 =Pme) Freyll <& lQmFTeryl| <&, (m>m(k)).
Hence,
ey, Fem@)|l = 1@m Fexrl - lloll <&, (m>m(k)). O
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5.3 Proof of the Cuntz—Higson theorem

Lemma 5.3.1 Let F, € GL*, r = 1,..., N, be arbitrary operators, and ¢ > 0 be any number. Then we
can choose such increasing non-intersecting sequences of natural numbers i(k) and j(k), that

£

ST s=kk+1,..., r=1,...,N, (79)

1
11 = pjcs)) Freig <MH<

1
Fresyans el < 5 253,@, s=1,..k=1, r=1,...,N (80)

Proof: Let us take (1) := 1. Let us choose j(1) > i(1) in such a way that

1 €
||(1 _pj(l))Frei(l)a1|| < 1 9191 r=1,...,N.

Let us discover ¢(2) > j(1), such that (in the correspondence with Lemma 5.2.3)

1 €
[(Freiayan, ejyon)|| < o 5 5.9 = 1,...,N.
Let us now choose j(2) > i(2), such that
1 € _ _
||(1—pj(2))Fre Olk||< 1 22 Qk’ k=12, r=1,...,N,
and such (3) > j(2), such that
1 €
||<F7‘ez( )0[3,6] O[s>||< 25,2k’ 521,2, Tzl,...,N.

Let us continue the process by induction. Let ¢(1),...,é(k — 1) and j(1),...,j(k — 2) be already found in
such a manner, that the conditions (79) and (80) hold for them. Let us find j(k —1) > i(k— 1), such that

1 €
(L = pje—1)) Freim ozm||<4 CTEsTE m=1,...k—=1, r=1,...,N,

and after that let us find #(k) > j(k — 1) in such a manner that

1
(Freiny o, €js ozs>||< 25521@’ s=1,...k=1, r=1,...,N.

By induction we obtain the required statement. O

Let us define now embeddings J and J’ similarly to the constructions in Lemma 5.2.2. For the
definition of J we shall take some of e;(, o w, as vectors vy;, but so that ¢ = g(s,j) > s +j, g > s,
whence e;(gyogws = ejgyws and (vsj, vsj) = w2, Let us define similarly v’,,, for J’, but taking ej (k) instead
of €;(x). From the conditions (79) and (80) we obtain

ICEw vt v ) = I{Er€itg(s ) Q5,095 €5 hin,m)) ()@ ) | < N Qjcnmm) Fr€itats 0y sl <
1 €
<N = pjhin,my—1) Freigges,iyagis,oll < = 1 gt g P2 =L N (81)
2
1 vst, V)| = I(Er€i(g(s,0) Q.05 € ((mm) @ninmywn)l| < 5 - gy R < gsr =1, N (82)

Let us denote through P and P’ the correspondent orthoprojections. Then PP’ = P'P = 0. Let z =
(a1,as2,...) and y = (b1, ba,...) be arbitrary vectors from [ (A) with the norm 1. Then forany r = 1,..., N

by (81,82)
(T, J'y)|| = H <Z > Fogar, Y vémbm>
t s m n
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2
< Z Z [(Frvse, vl + Z {(Frvst, v | < Z SRty gatts) <&

t,s,n,m \ h(n,m)>g(s,t) h(n,m)<g(s,t) t,s,n,m

since h(n,m) > n+m, g(t,s) > 1+ s by the construction. From this we obtain
||P'F,P|| < e, r=1,...,N. (83)

As it was shown in Lemma 5.1.2, it is sufficient to know how to construct a homotopy of picewise-linear
map with the image in a finite polyhedron in GL* with vertices Fy, ..., Fiy into a map in a compact set
{D(z)} C GL”, such that

PD(z)=D(z)P=P YzeS.

For this purpose we can apply a homotopy of Neubauer type (see Section 5.6). By (83) we have to take
care only of that, we have an operator Hy : P'(l5(A)) — P(l5(A)), such that operators HoP' and H;'P
admit adjoint. Let us assume Hy = JJ'*. Then HoP' = JJ™*J'J"”™ = JJ'*, where J'* is an isomorphism
P'(I3(A)) = 1:(A), and J : l2(A) = P(l2(A)).

We have proved the following statement.

Theorem 5.3.2 [3] Let A be a o-unital C*-algebra. Then GL*(A) is contractible with the respect to the
norm topology. 0O

5.4 The case A C K

Let algebra A be (for some faithful representation) a subalgebra of algebra K of compact operators on a
separable Hilbert space H. Under these restrictions we can prove the following statement.

Lemma 5.4.1 Let a,b € A, (f1, fa,...) €5(A). Then
[lafib]| = 0 (i = 00).
Proof: Since a* € K, for any ¢ > 0 we can find a number N = N(¢) and base hy, ha,...in H, such that

9
2-sup |fill’

py and pjy are the correspondent projections. Since [8] the partial sums of series ) . fi fi form an
increasing uniformly bounded sequence of positive operators in B(H), f;fi is strong convergent to the
zero operator. Hence, for any h € H

1f7hll = (f7hy £7R) = (Fifi b, h) = 0.

Thus, f7 is strong convergent to 0. Let 7y be so large, that

K3

llpya™]] < Hy =spang(hi, ..., hy), Hiy = Hy,

. €
i pnll < 3l
for ¢ > ig. Then
* * * 1 % € * * €
llafill = | ff pna™|| + | 7P a™|| < 3l lla™[] + [ £7 ||m <e. O

Let us remark, that similar properties for matrix elements themselves (which belong LM(K) = B(H))
are not valid even for operators from have not GL*. Moreover, the following example shows, that all matrix
elements can have the norm 1.

Example 5.4.2 (A. V. Buchina) Let H be Hilbert space, K = K(H) be the algebra of compact

operators on H,

I(K) = {(kl,kz,kg, L) ki€ KD kTR < oo} .
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Let us construct a invertible operator F : L2 (K) — [2(K) with the matrix elements with the respect
to the standard decomposition of {5(K), satisfying ||F; ;|| > 1 for all ¢ and j. These elements belong to
LM (K) = B(H), i. e. to the algebra of all bounded operators.

Let us denote through {e;} a base of H, and through p; the projection onto the span of the corre-
spondent basis vector. Let us take as F' an operator with the following matrix

P1 P2 P3 Pa Ps Ps Pr P8
P2 P11 P4 P3 P Ps5 Ps P
Ps P+ P1 P2 Pr pPs Ps Ps
Pa pP3s P2 P1 pPs PpPr Ps Ps
Ps Pe Pr Ps P1 P2 P3 P4
Ps Ps P8 Pr P2 P1 Pa Ps3
Pr P8 Ps Ps P3s pa pP1 P2
Ps Pr Ps Ps P4 P3 P2 N

where in the first row p; are ordered with the respect to the increase of 7, the second row is obtained
from the first by permutations in pairs ps;_1 and ps; for ¢ = 1,2, ..., the third row i1s obtained from the
first one by permutations of adjacent pairs, the fourth row i1s obtained by permutations in pairs in the
third one, the fifth is obtained by permutations of 4-tuples in the first one, and so on. Let us enter the
following notation: F; = p,,(;) and let us remark, that for iy # 5 Po., (j) + Po.,(j) for any j. Let us
show, that this operator F' satisfies to all given conditions.

1. Let us prove, that the image of (k1, ks, ks...) € [2(K) is compact for the action of each row of the
operator I, i. e. let us verify, that inequality: || Zj Po.(j)k;ll < oo holds for each 1.

For any ¢ > 0 we can find N € N, such that for all n > N and all p € N the following inequality
holds:

2 *

n+p n+p n+p n+p n+p
Yo paki| = || Do peuinki (chn(r)’fr) = D0 Kipouiiks|| < ||D Kiki| <&,
j=n j=n r=n j=n j=n

and by the Cauchy criterion from the convergence with the respect to the norm of Zj k3 k; 1t follows,
that Zj Po,(j)k;j converges with the respect to the norm. Thus, the series is norm convergent and its
terms are compact operators, hence, Zj Po,(j)kj 1s compact too.

2. Let us verify, that image of a vector (ki, k2, ks,...) € {2(K) under the action of an operator F
belongs to [5(K),i. e. let us prove convergence with the respect to the norm of the series

*

| 2o reinks (Zpa,(r)kr).
i=1 7 ”

We have
S pouiiks (Zpg,mkr) H: DD Kipou) Y poimke|| = (D0 Kipouik
=1\ r i=1 v i

Since || Zj k3kj|| < oo for any = € H of norm 1, the followinf inequalities hold:

00> Y " kiky| > <Z k;ij,x> = (kjw, ki) =
J J

J

=D Mkl =303 1kiw)ouy P = D0 D 1k
i PR i

138



Hence, for any ¢ > 0 and any #, [|z|| = 1, one can find a number N(x) € N, such that for all n > N ()
and all p € N the following inequality holds: Z?Ié’ Zj |(kjg;)gl(j)|2 < ¢. Thus,

n+p n+p
<Zkag kxx> ZZk*pg Vo, ) =

i=n j i=n j
n4p n+p
_ZZpgl ki, po,jykie) ZZHkx
i=n j i=n j

Let us enter operators B = Z kikj and By, = S Z Doy )kj, acting on H. The first of them is
compact, and consequently, the remammg are compact too as serieses with compact entries converging
with the respect to the norm. For a fixed vector « € H of length 1, the following statements hold:

(1) Inequality holds:

(Bpa,x) = ZZM’ x|2 <ZZ|]{7$ |” = (Bz, z);

(i1) limy oo (Brz, #) = (Bz, ).
Let us consider operator F,, := B — B,,. It is easy to see, that:

(i <Exa:>—>0forn—>oo

(il

(i) E, > 0;

)
) E
)
)

1Enll = 1B = Ball < [|B]|-

(iv

From (i) and (iii) it follows, that EY? —5 0 with the respect to the strong topology. By (iv) we
obtain F, — 0 with the respect to the strong topology, as multiplication is strong continuous on
bounded sets in both variables. We have proved the strong convergence of increasing sequence of positive
compact operators B,, to a compact operator B. Let us choose a finite-dimensional projection p, such
that ||B(1 — p)|] < ¢, and then n, so large that ||(B — By, )p|| < € for m > n. Then, since the sequence
increases,

1B = Bl < I(B = Bu)pll + [lp(B = Bp)ll + llp(B = B )pll + [|(1 = p)(B = By)(1 = p)|| <

<3[[(B = Ba)pll + [|(1 = p) B(1 = p)|| < 4e.

Thus, the operators B, converge to the operator B with the respect to the norm, ||B — B,|| — 0, for
n — o0o. Since ||B|| < oo, we have || 37,5 kX ps,(j)k;|| < oo. So, the item 2 is completely proved.

3. From the general form of the constructed operator F' it is obvious, that ||F;;|| = 1 for any ¢ and j.
4. Let us remark, that F*F = ['? = FF* = Id, Therefore, F is invertible.
The constructed operator I by items 1-4 satisfies all necessary conditions.

Theorem 5.4.3 The group GL (A) is contractible with the respect to the norm for A C K.

Proof: Since Lemma 5.4.1 is the analog of Lemma 5.2.3, the proof can be obtained by the literal repeating
of the reasoning from Section 5.3. O
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5.5 Some other cases
Definition 5.5.1 Let us tell, that C*-algebra A has property (K), if for any functional f : [2(A) — A,
any € > 0 and any a € A it is possible to find a vector € [3(A), such that

1F(@)l<e,  (x,2)=d"a

Definition 5.5.2 A C*-algebra A has property (E), if for any functional f = (f1,..., fa,...) € 5(A)
and any ¢ > 0 it is possible to find a another functional g = (g1,...,9n ...) € {5(A) and a number k € Z,
such that

Nf—gll<e,  fi=gi, i=k+1 k+2,...
and g|r, : Ly = A is epimorphism, where L, = { (a1,...,a,,0,0,...) }.

Example 5.5.3 Let A be the algebra of continuous functions on a smooth n-dimensional manifold M .
Then A has the property (E) (with k = n + 1).

For the proof of the following theorem we need

Lemma 5.5.4 Let M be a Hilbert module, x € M, (x,2) > a > 0, ||a|]| < 1. Then one can find an

element y = zb, ||b|| < 1, such that (y,y) = a>.

Proof: Let us put

—1/2
vy = {x,z), b:= lim (’y + —) a.
n

n—od

This (norm) limit exists, as

1\ 12 1\ 12 1\ ~1/2 1\ 172
o) 2 P )
n m n m
—1/2 —1/272
1 1 9
<llr+- -7+ —= 7" =0,
n m
since for any non-negative z holds
Pz PE L2 _ 1,2 ( 1 1) PE 11
— = = _—— = < — — —
z+2 a4+ L G+ m n)(z+HE+L) " m n

Also [|b]| < 1, as
IR IR
a(’y—l——) agal/z'y('y—l——) al/zgagl.
n n

2 is obvious now. O

The condition {y,y) = a

Theorem 5.5.5 The property (E) implies the property (K).

Proof: We can suppose ||a|| = 1. Let us consider an arbitrary functional f = (f1,...) € 5(A) and € > 0.
Let g and & be as in the condition (E) with the respect to £/2. Let us put f' := f|LIJ€_ Since L = 15(A),

by (E) there exists a functional ¢’ : Lt — A, such that
If' =dll<e/2,  fi=gi=g, i=k+1K+2...

and g’|LkLnLk, is an epimorphism. Then the functional

b {g on Lg;
= 1
g on L,
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satisfies to conditions: ||f — k|| < &, h is an epimorphism on Ly and L} N Ly separately. Without
loss of generality it is possible to suppose, that ||k|| = 1. Let @ € Ly and y € L N Ly be such that
h(z) = h(y) = a. Then h(x — y) = 0, and by [27] (see also [19, 2.1.4]),

a*a = (h(z),h(z)) <(z,2),  a"a=(h(y),h(y)) <(y,y)

By Lemma 5.5.4 it is possible to find b, such that ||b|| < 1 and z = (z — y)b satisfies (z, z) = a®. Thus
h(z) = h((x —y)b) = 0, and as ||z|| = 1, [|f(z)]| <e. O

Remark 5.5.6 Let 7 and 7’ be enclosures admitting adjoint and respecting inner product, and for the
correspondent projections ¢ = #* and ¢’ = i'i"* we have ||¢¢’|| < &, [|¢'q]] < . Let us remark, that ¢¢’ =
11*1'¢"*, where ¢ is an isometric enclosure and ¢* is an epimorphism with norm 1. Therefore, the indicated
mequahtles are equivalent to [|i*#’|| < ¢, ||¢*¢|]| < . Then the map I := (¢,4') : [2(A) & ZQ(A) — la(A) is

also an enclosure, admitting adjoint I*(x) = (¢* (), ¢*(x)). Really, I*, given by this formula, is continuous

and
(I(z,y), 2) = (i(x) +i'(y), z) = (2,i"(2)) + {, 7" (2)) = (2, 9), I (2)).
Also,
Iz, y) = (@ (ix +d'y), " (ix + 'y)) = (z,y) + 'y, i),
so that

IId — I*1]| < 2¢ (84)

and I*] is invertible. Therefore, I is an enclosure. Let us remark, that for this reasoning we need to have
< 1/2.

Theorem 5.5.7 Let algebra A have the property (K). Then the group GL (A) is norm contractible.

Proof: As above, it is necessary to prove a statement, similar to Lemma 5.2.3. In the present situation we
argue as follows. Let Fy be the first row (i. e., a functional) of matrix F' with the respect to the standard
decomposition l2(A). Let us remark, that any vector from l2(A) with any beforehand given exactness §
belongs to L, for a sufficient large n = n(g). Hence, applying the property (K), it is possible at once to
suppose, that # € L,. Really, let f(z) <¢/2, (x,2) =a < 1, [|f|| = 1. Let us find a number n, such that
[[(1 = pn)x|| <e/4, ' := ppa. Then (&', 2") < {x,2) = a and

o] < it a= (2, 2) — (&, 2) 2

Let us put y := &’ + epp1e. Then (y,y) = a, y € L4 and

e € ¢
1N < IF@I+ I = 2+ 15—l < S+ 54 5 ==
By applying the property (K) infinitely many times with constants, decreasing as geometrical pro-

gression, we can find a sequence of vectors x; € l3(A), satisfying to conditions

x; € M;, ZQ(A)IMl@MQ@, Mi:{(0,...,O,ak(i),...,ak(i_l_l)_l,O,...) }, (85)
(i, 23) = ay, a; — approximate unit for A, (86)

1
1Pl < 5 - (1)

Let us remark, that for k¥ > k(7) :  w; = ai/z d(i k), ||d(,k)]] < 1. Therefore, similar to reasonings
above, the map

Ji i lo(A) =5 I(4), (a1, as,...) HZZM (i) (i,4))a;,

where

k(1,1); k(1,2), k(2,1); k(1,3), k(2,2), k(3,1);. ..
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is some increasing sequence, will be an enclosure admitting an adjoint and preserving the inner product.
If we denote Hy :=ImJy, then by (87)

g
1Pl < 5

Let GG1 be the orthogonal complement to the image of the first copy of A under J;. Let m(2) > m(1) := 1

be so large, that [|(1 — pp2)) Fy(1)|| < €/2, where y; = Jl(o&/z,o, ...). Let us denote through Fs the
restriction of the m(2)-th row of the matrix F' on G; = [3(A), and let us find by the same algorithm a
new enclosure Js, such that its image equals to Hs and there exists a correspondent submodule G5 C Ho,

and

€
1Pl < o
Let m(3) > m(2) be so large, that
€ .
||(1_pm )Fyl||< 93 . 22’ Z:1a2a Y2 1= JZ(aé/zaOa"')a
€ .
(1 = pmesy)uill < % 90 i=1,2.
And so on. We obtain sequences m(j) and y; such, that
9 . .
(L = P )Fyz||< 9 i=1,...,5—1, (88)
9 . .
11 = pmi))uill < 5 22, i=1,...,j-1 (89)
|Qm(; Fyl||< 22, j=1,...,1, (90)

Again, using w;, we can arrange an enclosure J of the module {3(A) on a submodule H of the linear
span of y; and an enclosure J' of the module [2(A) on the submodule H' := @j Epn(j)- Since these
modules are ¢-ortogonal, there exist mutually vanishing projectors p and p’ on them. More precisely, let
us remark first of all, that the enclosure J admits adjoint. Really, the image of each vector (a1, as,...)
under Jy is a sum of the form

_ 2
>3 wiag,  (vijvg) =wi v € Myg ).
7 7

For construction of the higher J; the correspondent vj; will lay again in direct sums of modules M,, and
for v}, these sets are not intersecting. We can apply Lemma 5.2.2. The operator J will is defined by the

formula
J:(al,az,...)HZvalas, valas:ysusas. (91)
s g 7
Hence, there are the orthoprojections ¢ and ¢’ on H and H’, correspondently. Let us remark, that from
this reasoning we can make the following refinement. We, in particular, have shown, that for any Js and
any m there exists no more than one r, such that Q,,J;@Q, # 0. Therefore, throwing out if necessary,

a finite number of canonical summands in [2(A) and restricting J;, on the remaining module, we can
suppose, that

Qminds =0, j=1,...,5—1, (92)
Also, |l¢d’|| < €, |¢'¢q|| < . Really, let us consider a vector of the form

xzzzvflaszzysﬂsam ||Za:a5||§ 1.
s g s s

It is necessary to show, that [|¢’z|| < e. It follows from (89, 93):

Il = | @iy B | < 3 |5 @niy (Z) LY

s Jj>s 7 s j<s

<

K3

Qm(]) (Z vflas)
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< SN0 =P + 30 Y 5 =

s j<s
Since the projections ¢ and qv’ are self-adjoint, we obtain and second estimation.

Then by Remark 5.5.6 H©H' is the image of an enclosure, admitting adjoint, and by [23] (see also [19,
Theorem 2.3.3]) the decomposition l3(A) = HGH' & (HL N H'1L) takes place. Let us denote through p
and p’ projections on H and H' correspondent to this decomposition, so that pp’ = p’p = 0. Thus

lp—all<3s, [P =dll<3e,  lpll<1+3e<2, [pPlI<l+3:<2 (94)
Really, let € HOH', ||z|| = 1, so that = I1* Iy, and by (84) ||1y|| < 2(1 +¢),
I(p = @)zl = [l(p = ) (i@~ Ly + " Ly)|| = [[(p — 9) (g + ¢V yll = || — qq' Iy[] < 2e(1 +¢) < 3e.
Besides, ||[p’ F'p|| < 7[|F|le. In fact,
1" Fpll = |(v" — ) F'p+ o' Fpl| < 3¢l FI| + |l Fpll,

and by (94) it is sufficient to prove, that for # € H, ||z|| < 1, holds ||¢’ F#|| < 2. Any such vector z can

be presented as
SO ovhac =Y wmsas, 1D ajall <1
s 7 s s

Then
I Fell= 13 Qi 22 Frnacl| £ 2.0 1 QminFoh +2 0| Qmty (Z) :
) i ||i>s s j<s i
<2 0= pmis JEyssas |+ 303 5750 _Z—+6—26
s j<s

Let us remark, that similar statement we can receive not only for one operator F' (actually for two:
F and Id), but for a finite collection (vertices of a simplicial complex): FO . F®) For this purpose
it is necessary to conduct reasonings for F = F(1) with a constant ¢ and to receive projections P; and
P!. Then apply algorithm To P/F(*) P; and receive projections P4 and Ps, such that

P1/P2/:P2/P1/:P2/’ PiPo=PPr=P, P,P=PP =0, ||PF P2||<6 ||PF P2||<6

And so on. This completes the proof, since now it is possible to apply the Neubauer homotopy. O

Let us complete this paragraph by a discussion on the following example, which is reassuring in
relation to size of the class (K).
Example 5.5.8 In the notation of Example 2.5.6 in [19] let us consider the functional

fila(4) = A, f:(al,az,...)HZuiai.

It has the property (K). Really,

1 1 1
||f(zn)||<g, [|zn]| = 1, Zp 1= g,...,g,0,0,...
——’

5.6 Neubauer type homotopy

In this section we describe, how to modify the homotopy from [26] for our purposes. Though we work
with completely other objects; the construction in [26] is so universal, that proofs can be transferred
almost without modifications.
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Lemma 5.6.1 Let M be a Hilbert A-module , X be a topological space, T : X — G = G(M) be a
continuous map, and P and P’ be projections from £ = E(M), such that

PP' =P'P=0, Hy: PPM=PM, HoP' €&, Hy'PeE, P'T(x)P=0 Yz€X.
Then there is a homotopy T' ~ D in G, such that
PD(z)=Dx)P=P VrelX.
Proof: Le us put Q :=Id — P, Q' :=1d — P/,

Plx) :=T(x)PT(x)"'Q, Qz) = Q" —P(x).

Then P(z) is a projection on T(x)PM and there is the decomposition into projections Id = Q(z) +
P(x)+ P, and Q(x), P(x) and P’ are mutual vanishing for each . Really,

QT (x)P = (Id — P\T(2)P = T(z)P, PT(x)"'QT(x)P =P, T(z)PM CP(x)M C T(x)PM,
P(z)P(z) = T(z)PT(x)"'(1d — P')T'(z)PT(z)"'(1d — P') =
= T(z)PT(x)" ' T(z) PT(x)" (Id - P = T(x)PT(x)_l(Id — Py =P(x),
Q(z) +P(x)+ P = P(x) + P(x) =1d,
P(x)P = T(x)PT(x)"'(Id — P")P' = P'P(z) = ( )PT(x)~*(1d — P') =0,

Hence, P(x) + P’ is a projection, whence Q(z) =1d — (P(z) + P’ ) is a projection too.
Let us define
H=—-HoP' + H;'P,

then, as PP = PP' =0, P"Hy = PH; ' = 0 and
H? = (—HoP' + H;'P)(—HoP' + Hy'P) = —(P' + P),
HP'H = (=HoP' + Hy'PYP (—HoP' + Hy'P) = —HoP'H;'P = —HoH;'P = —P,
QHP=HP—-PHP=H;'P-H;'P=0,
QHT () 'P(z) = QHT(z)"'T(2) PT(x)™'Q" = 0,
P)T(x)HP = T(x)PT(z)"'Q T (x)HP = T(x)PT(x)" (1 — P\T'(x)(—HoP') =
=T(z)PT(x)" (1 = PYT(x)P(=HoP') = T(x)PT () 'T(x)P(—HoP') = T(x)P(—HoP') = T(x)HP'.

Let’s assume

G(x) = HT(x)"'P(x) 4+ T(x)HP’,

Then
G(z)* = (HT(2)""P(x) + T(x)HP")(HT (2)" ' P(x) + T(x) HP') =

= HT(z) 'P(z)HT(z)"*P(2) + T(x)(=P)T(x) ' P(x) + HT (z) "' P(2)T(x)HP' +T(x)H P'T(x)H P’ =
= HT(x) ' T(x)PT(x) ' Q'HT ()" P(x) + T(x)(=P)T ()" T (x) PT(x)~'Q'+
+HT(2) T (2)HP + T(2)HP'T(z)HP =

=0-T(2)PT(x)™'Q" ~ P’+T( J(=HoP)T(x)(~=HoP') = 0—P(x) = P'+0=—(F

(z)Q(x) = Q2)G(z) = (Q = P(x))(HT(x)"'P(x) + ()HP)=

=Q'HT(x)” 17’(96) (Id — PT(2)(=PHoP') = P(x)HT(2)""P(x) — P(x)T(x)H
=04 T(e)HP' = (T(2)PT(x)™'Q")(=HoP' + Hy ' P)T(2) (T (x) PT(2)™'Q") = T( )HP’
= (T(¢)PT(2)~'Q Ho[P'P)T(¢)™'Q") = T(«) PT(2)~'[Q'P'JHg ' PT(2) " (T(¢) PT(2)~'Q") =

Hence, for

P()),

Q

U(s,z) := Q(z) + (1 — 5)(P(x) + P') + sG(x)
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we obtaln

1
s2 4 (1 —s)?
Therefore, U(s, )T (x) defines a homotopy in G

U(s,2)™" = Q(e) + [(1=5)(P(x) + P') = sG(x)].
U0, 2)T(x) =1d o T'(x) ~ U(1,2) o T(x).
Thus, as P(z)T(x)P = T(x)P,

Ul,2)T(x)P Q(x)P(x)T(2)P + G(x)P(x)T(x)P =

04+ HT(z)"'P(2)T(x)P = HT (x)~'T(2)P = HP.

Since H(P+ P') = (P+ P")H = H, for
V(s):=QQ + (1 —s)(P+P)—sH

we have

. , 1
V(S) 1:QQ +m

Besides, V(0) = QQ' + P+ P’ =1d . Therefore, the following homotopy is defined

[(1—s)(P + P') + sH].

Rx) =V(HU(L,&)T(x) ~U(1l,2) T(x) B C(X,G(M)),

wnd R(z)P V) U(L,z) T(z)P =

V(IWHP=QQ'HP — H*P =0+ (P+P)P=P.

Let us put
R(s,z) := R(x) — sPR(x)Q.

Let for some e € M the equality R(s,z)e = 0 hold. Then
0= R(s,z)e = R(z)(P + Q)e — sPR(x)Qe = Pe + R(z)Qe — sPR(z)Qe, 0= QR(s,z)e = QR(z)Qe.
Let f = PR(z)Qe, so that f = Pf. Then
PR(z)(Qe— Pf)=f-Pf=0, QR(z)Pf=0.
Therefore, R(z)(Qe — Pf) =0, Qe = Pf = f =0 and PR(s,z)e = Pe = 0, e = 0. Also
R(@)M =M, R@)P=P, QR(x)QM=QR(x)(1-P)M=QR(z)M = QM.
Therefore, with the respect to the decomposition M = PM&QM the operator R(s, ) has the matrix

(% onine ) QrEIQM=Qum

hence, R(s, ) is an epimorphism, and R(s,z) € G(M) as an epimorphism without kernel. Tt is sufficient
to put D(z) := R(1,z). O

Lemma 5.6.2 Let M be a Hilbert A-module , Xbe a compact set, T : X — G(M) be a continuous map
with 0 < & < min||T(z)~Y||7%,, and P and P’ be such projections from & = £(M), that
|[P'T(x)P||<e VzeX.
Then there exists a homotopy S(s,z) in G, such that
S(0,z) = T(=), P'S(l,z)P =0 VzeX.
Proof: Let us put S(s,z) :=T(x) — sP'T(x)P. Since
15(s,2) - T <<,
S(s,z) € G(M). O
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