#include #include #include #include #include class Params { // Parameters of thread public: double (*f)(double); // Function to integrate double a; // Integral limits double b; double dx; // Integration step double res; // Result: Integral of function on [a, b] Params( double (*func)(double) = nullptr, double a0 = 0., double b0 = 0., double ddx = 0.001 ): f(func), a(a0), b(b0), dx(ddx), res(0.) {} }; void threadFunction(Params* params); double integralSimpson( double (*f)(double), double a, double b, double dx = 0.001 ); double f(double); // Function to integrate int main() { int numThreads; std::cout << "Enter the number of threads: "; if (!(std::cin >> numThreads) || numThreads <= 0) { std::cerr << "Incorrect number of threads" << std::endl; return (-1); } std::vector threads; threads.reserve(numThreads); std::vector threadParams(numThreads); std::cout << "Enter integral limits a, b: "; double a, b; if (!(std::cin >> a >> b)) { std::cerr << "Incorrect integral limits" << std::endl; return (-1); } std::cout << "Enter integration step dx: "; double dx; if (!(std::cin >> dx)) { std::cerr << "Incorrect integration step" << std::endl; return (-1); } // Measure the duration // Start time: auto t0 = std::chrono::high_resolution_clock::now(); double segmentLength = (b - a)/numThreads; for (int i = 0; i < numThreads; ++i) { threadParams[i] = Params( f, a + i*segmentLength, a + (i + 1)*segmentLength, dx ); threads.push_back( std::thread(threadFunction, &threadParams[i]) ); } double sum = 0.; for (int i = 0; i < numThreads; ++i) { threads[i].join(); sum += threadParams[i].res; } // Finish time: auto t1 = std::chrono::high_resolution_clock::now(); std::chrono::duration ms_double = t1 - t0; std::cout << "Integral = " << sum << std::endl; std::cout << "Duration " << ms_double.count() << " milliseconds." << std::endl; return 0; } double f(double x) { // Function to integrate return sin(x); } void threadFunction(Params* params) { double sum = integralSimpson( params->f, params->a, params->b, params->dx ); params->res = sum; } double integralSimpson( double (*f)(double), double a, double b, double dx /* = 0.001 */ ) { double factor = 1.; if (b < a) { // Swap the integral limits factor = (-1.); double tmp = a; a = b; b = tmp; } int n = int((b - a)/dx); if (n <= 0) { n = 2; } else { if (n%2 != 0) ++n; // n must be even } double h = (b - a)/n; // Integration step double s0 = f(a) + f(b); double s1 = 0.; double s2 = 0.; double x = a; int k = n/2; for (int i = 0; i < k; ++i) { x += h; s1 += f(x); x += h; if (i < k - 1) s2 += f(x); } return factor*(s0 + 4.*s1 + 2.*s2)*h/3.; }