FUNDAMENTALNAYA I PRIKLADNAYA MATEMATIKA

(FUNDAMENTAL AND APPLIED MATHEMATICS)

2010, VOLUME 16, NUMBER 6, PAGES 45-62

Hyperbolas over two-dimensional Fibonacci quasilattices

V. G. Zhuravlev

Abstract

View as HTML     View as gif image

For the number ns(a,b;X) of points (x1,x2) in the two-dimensional Fibonacci quasilattices Fm2 of level m = 0,1,2,¼ lying on the hyperbola x12 - a x22 = b and such that 0 £ x1 £ X, x2 ³ 0, the asymptotic formula

ns(a,b;X) ~ cs(a,b) ln X as X ® ¥

is established, the coefficient cs(a,b) is calculated exactly. Using this, the following result is obtained. Let Fm be the Fibonacci numbers, Ai Î N, i = 1,2, and let $ \overleftarrow {A}_i $ be the shift of Ai in the Fibonacci numeral system. Then the number ns(X) of all solutions (A1,A2) of the Diophantine system

$$
\left\{ \begin{aligned}
& A_1^2+\overleftarrow {A}_1^2- 2 A_2 \overleftarrow {A}_2+ \overleftarrow {A}_2^2 = F_{2s},
& \overleftarrow {A}_1^2- 2 A_1 \overleftarrow {A}_1+A_2^2 - 2 A_2 \overleftarrow {A}_2+ 2 \overleftarrow {A}_2^2 = F_{2s-1},
\end{aligned} \right.
$$

0 £ A1 £ X, A2 ³ 0, satisfies the asymptotic formula

$$
n_s(X) \sim \frac{c_s}{\mathrm{arcosh}(1/\tau)} \ln X \quad \text{as}\quad X \rightarrow \infty.
$$

Here t = (-1 + √(5))/2 is the golden ratio, and cs = 1/2 or 1 for s = 0 or s ³ 1, respectively.

Main page Contents of the journal News Search

Location: http://mech.math.msu.su/~fpm/eng/k10/k106/k10605h.htm
Last modified: July 5, 2011