ФУНДАМЕНТАЛЬНАЯ И ПРИКЛАДНАЯ МАТЕМАТИКА
1998, ТОМ 4, ВЫПУСК 2, СТР. 659-667
И. В. Садовничая
Аннотация
Посмотреть как HTML
Посмотреть как рисунок
Посмотреть в формате LaTeX
Данная работа посвящена рассмотрению стохастического дифференциального уравнения типа Шредингера. В 1988 году было получено нелинейное уравнение Шредингера (в общем виде -- В. П. Белавкиным и в наиболее важном частном случае -- Л. Диози), описывающее эволюцию квантовой системы в условиях непрерывного измерения. В первой части настоящей заметки рассматривается стохастическое уравнение
(частный случай уравнения Белавкина) и дается явный вид диффузионного процесса, являющегося решением этого уравнения. Это решение представляет собой интеграл по мере Винера. Во второй части настоящей работы этот интеграл представляется в виде предела сходящейся последовательности конечнократных интегралов, которые используются в определении интеграла Фейнмана.
Главная страница | Редколлегия | Информация для авторов |
Поиск | Содержание журнала | Объявления |
URL страницы: http://mech.math.msu.su/~fpm/rus/98/982/98213h.htm
Изменения вносились 24 апреля 2000 г.