ФУНДАМЕНТАЛЬНАЯ И ПРИКЛАДНАЯ МАТЕМАТИКА
1998, ТОМ 4, ВЫПУСК 4, СТР. 1419-1422

Сепарабельные абелевы группы без кручения с UA-кольцами эндоморфизмов

О. В. Любимцев

Аннотация

Посмотреть как HTML    Посмотреть как рисунок    Посмотреть в формате LaTeX

Кольцо $R$ называется кольцом с однозначным сложением (UA-кольцом), если на его мультипликативной полугруппе $(R,\cdot)$ можно задать единственную бинарную операцию $+$, превращающую ее в кольцо $(R,\cdot,+)$. Абелеву группу назовем $\mathop{End}$-UA-группой, если ее кольцо эндоморфизмов является UA-кольцом. В статье исследуются условия, при которых сепарабельная абелева группа без кручения будет $\mathop{End}$-UA-группой.

Постскрипт статьи (33 Kb)

Главная страница Редколлегия Информация для авторов
Поиск Содержание журнала Объявления

URL страницы: http://mech.math.msu.su/~fpm/rus/98/984/98418t.htm
Изменения вносились 27 октября 2000 г.