ФУНДАМЕНТАЛЬНАЯ И ПРИКЛАДНАЯ МАТЕМАТИКА
2000, ТОМ 6, ВЫПУСК 3, СТР. 903-911
А. А. Туганбаев
Аннотация
Посмотреть как HTML   
Посмотреть как рисунок   
Посмотреть в формате LaTeX
Если $A$  --- ограниченное дедекиндово первичное кольцо и $M$  ---
$A$ -модуль, то $M$  --- проективный модуль тогда и только тогда,
когда $M$  --- $\pi$ -проективный непериодический модуль, причем
либо $M$  --- редуцированный модуль, либо $A$  --- простое артиново кольцо.
Полнотекстовая версия статьи в формате PostScript (43 Kb)
| Главная страница | Содержание журнала | Новости | Поиск | 
URL страницы: http://mech.math.msu.su/~fpm/rus/k00/k003/k00320t.htm
Изменения вносились 8 декабря 2000