ФУНДАМЕНТАЛЬНАЯ И ПРИКЛАДНАЯ МАТЕМАТИКА
2006, ТОМ 12, ВЫПУСК 5, СТР. 203-219

Точные управляющие уравнения, описывающие редуцированную динамику функции Вигнера

И. Купш
О. Г. Смолянов

Аннотация

Посмотреть как HTML    Посмотреть как рисунок

Управляющие уравнения различных видов описывают эволюцию (редуцированную динамику) подсистемы большей системы, порождённую динамикой этой большей системы. Поскольку в некоторых случаях такие (точные) управляющие уравнения сравнительно сложны, существуют многочисленные аппроксимации для таких уравнений, также называемые управляющими уравнениями.

В статье выводится точное управляющее уравнение, описывающее редуцированную динамику функции Вигнера для квантовых систем, полученных квантованием гамильтоновой системы с квадратичной функцией Гамильтона. Сначала рассматривается точное управляющее уравнение для первых интегралов обыкновенных дифференциальных уравнений в бесконечномерных локально выпуклых пространствах. Затем полученные результаты применяются к выводу точного управляющего уравнения, соответствующего аналогу уравнения Лиувилля (которое является уравнением для первых интегралов уравнения (или системы уравнений) Гамильтона); последнее управляющее уравнение, которое мы называем управляющим уравнением Лиувилля, является линейным дифференциальным уравнением первого порядка относительно функции вещественной переменной, принимающей значения в пространстве функций на фазовом пространстве. Если гамильтоново уравнение, порождающее уравнение Лиувилля, линейно, то векторные поля, которые определяют линейные дифференциальные операторы первого порядка в управляющем уравнении Лиувилля, также линейны, откуда вытекает, в свою очередь, что для гауссовского основного состояния преобразование Фурье решения управляющего уравнения Лиувилля удовлетворяет линейному дифференциальному уравнению.

Полнотекстовая версия статьи в формате PDF (203 Kb)

Главная страница Содержание журнала Новости Поиск

URL страницы: http://mech.math.msu.su/~fpm/rus/k06/k065/k06516h.htm
Изменения вносились 21 февраля 2007 г.