ФУНДАМЕНТАЛЬНАЯ И ПРИКЛАДНАЯ МАТЕМАТИКА
2011/2012, ТОМ 17, ВЫПУСК 1, СТР. 3-21
Особые точки решений линейных обыкновенных дифференциальных систем с
полиномиальными коэффициентами
С. А. Абрамов
Д. Е. Хмельнов
Аннотация
Посмотреть как HTML
Посмотреть как рисунок
Рассматриваются системы линейных обыкновенных дифференциальных
уравнений относительно неизвестных функций
от .
Коэффициенты систем являются полиномами над полем
характеристики .
Каждая из рассматриваемых систем состоит из независимых над
уравнений, порядки которых произвольны.
Предлагается компьютерно-алгебраический алгоритм, который по заданной
системе
рассматриваемого вида находит такой полином , что если при некотором
система
обладает в решением и какая-то из компонент этого
решения имеет ненулевую полярную часть, то .
Если и система
обладает аналитическим решением с особенностью любого вида (не
обязательно полюсом) в , то равенство
также выполняется.
Полнотекстовая
версия статьи в формате PDF (204 Kb)
URL страницы: http://mech.math.msu.su/~fpm/rus/k1112/k111/k11101h.htm
Изменения вносились 31 января 2012 г.