ФУНДАМЕНТАЛЬНАЯ И ПРИКЛАДНАЯ МАТЕМАТИКА
1998, ТОМ 4, ВЫПУСК 1, СТР. 317-332
Е. Ю. Панов
Аннотация
Посмотреть как HTML
Посмотреть как рисунок
Посмотреть в формате LaTeX
В терминах функции распределения дается кинетическая интерпретация
мерозначного решения задачи Коши для квазилинейного уравнения первого
порядка. Тем самым обобщаются известные результаты, касающиеся обобщенных
решений (в классе $L^\infty$ ) рассматриваемой задачи. Описываются также
``кинетические'' решения,
соответствующие (образующим класс существования и
единственности) сильным мерозначным решениям.
Главная страница | Редколлегия | Информация для авторов |
Поиск | Содержание журнала | Объявления |
URL страницы: http://mech.math.msu.su/~fpm/rus/98/981/98122t.htm
Изменения вносились 24 апреля 2000